I love the new tidyr
pivot_wider
function but since it hasn't been officially added to the CRAN package I was wondering how to convert the following code into the older spread()
function (I do not have access to the server to DL tidyr
from github)
test <- data.frame(x = c(1,1,2,2,2,2,3,3,3,4),
y = c(rep("a", 5), rep("b", 5)))
test %>%
count(x, y) %>%
group_by(x) %>%
mutate(prop = prop.table(n)) %>%
mutate(v1 = paste0(n, ' (', round(prop, 2), ')')) %>%
pivot_wider(id_cols = x, names_from = y, values_from = v1)
# A tibble: 4 x 3
# Groups: x [4]
x a b
<dbl> <chr> <chr>
1 1 2 (1) NA
2 2 3 (0.75) 1 (0.25)
3 3 NA 3 (1)
4 4 NA 1 (1)
I tried (but is not quite right):
test %>%
count(x, y) %>%
group_by(x) %>%
mutate(prop = prop.table(n)) %>%
mutate(v1 = paste0(n, ' (', round(prop, 2), ')')) %>%
spread(y, v1) %>%
select(-n, -prop)
Any help appreciated!
One option is to remove the columns 'n', 'prop' before the spread
statement as including them would create unique rows with that column values as well
library(dplyr)
library(tidyr)
test %>%
count(x, y) %>%
group_by(x) %>%
mutate(prop = prop.table(n)) %>%
mutate(v1 = paste0(n, ' (', round(prop, 2), ')')) %>%
select(-n, -prop) %>%
spread(y, v1)
# A tibble: 4 x 3
# Groups: x [4]
# x a b
# <dbl> <chr> <chr>
#1 1 2 (1) <NA>
#2 2 3 (0.75) 1 (0.25)
#3 3 <NA> 3 (1)
#4 4 <NA> 1 (1)
Or using base R
tbl <- table(test)
tbl[] <- paste0(tbl, "(", prop.table(tbl, 1), ")")