I've got the standard iris dataset projected down to two dimensions using UMAP, with the UMAP dimensions for the x and y positions of the 2D plot added as columns to the dataframe:
import numpy as np
import math
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from sklearn.datasets import load_iris
import umap # pip install umap-learn
iris = load_iris()
iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)
iris_df['species'] = pd.Series(iris.target).map(dict(zip(range(3), iris.target_names)))
_umap = umap.UMAP().fit_transform(iris.data)
iris_df['UMAP_x'] = _umap[:,0]
iris_df['UMAP_y'] = _umap[:,1]
iris_df.head()
I'd like to bin both the UMAP_x
and UMAP_y
columns into like 25 bins and then the other columns in the dataframe change to being the mean values of the columns in each of the bins. How might this be done? It feels like cut
or resampling might lead to the answer, but I'm not sure how.
You can use cut
to define bins and then use groupby
with transform
to calculate mean value for each bin.
import numpy as np
import math
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from sklearn.datasets import load_iris
import umap
iris = load_iris()
iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)
iris_df['species'] = pd.Series(iris.target).map(dict(zip(range(3), iris.target_names)))
_umap = umap.UMAP().fit_transform(iris.data)
iris_df['UMAP_x'] = _umap[:,0]
iris_df['UMAP_y'] = _umap[:,1]
# Define bins for UMAP_x and UMAP_y params
iris_df['UMAP_x_bin'] = pd.cut(iris_df['UMAP_x'], bins=25)
iris_df['UMAP_y_bin'] = pd.cut(iris_df['UMAP_y'], bins=25)
# Calculate mean value for each bin
iris_df['UMAP_x_mean'] = iris_df.groupby('UMAP_x_bin')['UMAP_x'].transform('mean')
iris_df['UMAP_y_mean'] = iris_df.groupby('UMAP_y_bin')['UMAP_y'].transform('mean')
iris_df.head()