I'm using StratifiedKFold so my code looks like this
def train_model(X,y,X_test,folds,model):
scores=[]
for fold_n, (train_index, valid_index) in enumerate(folds.split(X, y)):
X_train,X_valid = X[train_index],X[valid_index]
y_train,y_valid = y[train_index],y[valid_index]
model.fit(X_train,y_train)
y_pred_valid = model.predict(X_valid).reshape(-1,)
scores.append(roc_auc_score(y_valid, y_pred_valid))
print('CV mean score: {0:.4f}, std: {1:.4f}.'.format(np.mean(scores), np.std(scores)))
folds = StratifiedKFold(10,shuffle=True,random_state=0)
lr = LogisticRegression(class_weight='balanced',penalty='l1',C=0.1,solver='liblinear')
train_model(X_train,y_train,X_test,repeted_folds,lr)
now before train the model I want to standardize the data so which is the correct way?
1)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
doing this before calling train_model function
2)
doing standardization inside function like this
def train_model(X,y,X_test,folds,model):
scores=[]
for fold_n, (train_index, valid_index) in enumerate(folds.split(X, y)):
X_train,X_valid = X[train_index],X[valid_index]
y_train,y_valid = y[train_index],y[valid_index]
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_vaid = scaler.transform(X_valid)
X_test = scaler.transform(X_test)
model.fit(X_train,y_train)
y_pred_valid = model.predict(X_valid).reshape(-1,)
scores.append(roc_auc_score(y_valid, y_pred_valid))
print('CV mean score: {0:.4f}, std: {1:.4f}.'.format(np.mean(scores), np.std(scores)))
As per my knowlwdge in 2nd option I'm not leaking the data.so which way is correct if I'm not using pipeline and also how to use pipeline if i want to use cross validation?
Indeed the second option is better because the scaler does not see the values of X_valid
to scale X_train
.
Now if you were to use a pipeline, you can do:
from sklearn.pipeline import make_pipeline
def train_model(X,y,X_test,folds,model):
pipeline = make_pipeline(StandardScaler(), model)
...
And then use pipeline
instead of model
. At every fit
or predict
call, it will automatically standardize the data at hand.
Note that you can also use the cross_val_score function from scikit-learn, with the parameter scoring='roc_auc'
.