I want to coalesce
4 columns using pandas. I've tried this:
final['join_key'] = final['book'].astype('str') + final['bdr'] + final['cusip'].fillna(final['isin']).fillna(final['Deal'].astype('str')).fillna(final['Id'])
When I use this it returns:
+-------+--------+-------+------+------+------------+------------------+
| book | bdr | cusip | isin | Deal | Id | join_key |
+-------+--------+-------+------+------+------------+------------------+
| 17236 | ETFROS | | | | 8012398421 | 17236.0ETFROSnan |
+-------+--------+-------+------+------+------------+------------------+
The field Id
is not properly appending to my join_key
field.
Any help would be appreciated, thanks.
Update:
+------------+------+------+-----------+--------------+------+------------+----------------------------+
| endOfDay | book | bdr | cusip | isin | Deal | Id | join_key |
+------------+------+------+-----------+--------------+------+------------+----------------------------+
| 31/10/2019 | 15 | ITOR | 371494AM7 | US371494AM77 | 161 | 8013210731 | 20191031|15|ITOR|371494AM7 |
| 31/10/2019 | 15 | ITOR | | | | 8011898573 | 20191031|15|ITOR| |
| 31/10/2019 | 15 | ITOR | | | | 8011898742 | 20191031|15|ITOR| |
| 31/10/2019 | 15 | ITOR | | | | 8011899418 | 20191031|15|ITOR| |
+------------+------+------+-----------+--------------+------+------------+----------------------------+
df['join_key'] = ("20191031|" + df['book'].astype('str') + "|" + df['bdr'] + "|" + df[['cusip', 'isin', 'Deal', 'id']].bfill(1)['cusip'].astype(str))
For some reason this code isnt picking up Id
as part of the key.
The last chain fillna
for cusip
is too complicated. You may change it to bfill
final['join_key'] = (final['book'].astype('str') +
final['bdr'] +
final[['cusip', 'isin', 'Deal', 'Id']].bfill(1)['cusip'].astype(str))