User Chrisvdberge helped me creating the following code :
import pandas as pd
import requests
from bs4 import BeautifulSoup
url_DAX = 'https://www.eurexchange.com/exchange-en/market-data/statistics/market-statistics-online/100!onlineStats?viewType=4&productGroupId=13394&productId=34642&cp=&month=&year=&busDate=20191114'
req = requests.get(url_DAX, verify=False)
html = req.text
soup = BeautifulSoup(html, 'lxml')
df = pd.read_html(str(html))[0]
df.to_csv('results_DAX.csv')
print(df)
url_DOW = 'https://www.cmegroup.com/trading/equity-index/us-index/e-mini-dow_quotes_settlements_futures.html'
req = requests.get(url_DOW, verify=False)
html = req.text
soup = BeautifulSoup(html, 'lxml')
df = pd.read_html(str(html))[0]
df.to_csv('results_DOW.csv')
print(df)
url_NASDAQ = 'https://www.cmegroup.com/trading/equity-index/us-index/e-mini-nasdaq-100_quotes_settlements_futures.html'
req = requests.get(url_NASDAQ, verify=False)
html = req.text
soup = BeautifulSoup(html, 'lxml')
df = pd.read_html(str(html))[0]
df.to_csv('results_NASDAQ.csv')
print(df)
url_CAC = 'https://live.euronext.com/fr/product/index-futures/FCE-DPAR/settlement-prices'
req = requests.get(url_CAC, verify=False)
html = req.text
soup = BeautifulSoup(html, 'lxml')
df = pd.read_html(str(html))[0]
df.to_csv('results_CAC.csv')
print(df)
I have the following result :
3 .csv files are created : results_DAX.csv (here, everything is ok, I have the values I want.) ; results_DOW.csv and results_NASDAQ.csv (here, the problem is that the .csv files don't have the wanted values.. I don't understand why ?)
As you can see in the code, 4 files should be created and not only 3.
So my questions are :
How to get 4 csv files ?
How to get values in the results_DOW.csv and in the results_NASDAQ.csv files ? (and maybe also in the results_CAC.csv file)
Thank you for your answers ! :)
Try this to get those other sites. The last site is a little trickier, so you'd need to try out Selenium:
import pandas as pd
import requests
from bs4 import BeautifulSoup
from datetime import date, timedelta
url_DAX = 'https://www.eurexchange.com/exchange-en/market-data/statistics/market-statistics-online/100!onlineStats?viewType=4&productGroupId=13394&productId=34642&cp=&month=&year=&busDate=20191114'
df = pd.read_html(url_DAX)[0]
df.to_csv('results_DAX.csv')
print(df)
dt = date.today() - timedelta(days=2)
dateParam = dt.strftime('%m/%d/%Y')
url_DOW = 'https://www.cmegroup.com/CmeWS/mvc/Settlements/Futures/Settlements/318/FUT'
payload = {
'tradeDate': dateParam,
'strategy': 'DEFAULT',
'pageSize': '500',
'_': '1573920502874'}
response = requests.get(url_DOW, params=payload).json()
df = pd.DataFrame(response['settlements'])
df.to_csv('results_DOW.csv')
print(df)
url_NASDAQ = 'https://www.cmegroup.com/CmeWS/mvc/Settlements/Futures/Settlements/146/FUT'
payload = {
'tradeDate': dateParam,
'strategy': 'DEFAULT',
'pageSize': '500',
'_': '1573920650587'}
response = requests.get(url_NASDAQ, params=payload).json()
df = pd.DataFrame(response['settlements'])
df.to_csv('results_NASDAQ.csv')
print(df)