Search code examples
pythonstatisticsdistributionscipy

skew normal distribution in scipy


Does anyone know how to plot a skew normal distribution with scipy? I supose that stats.norm class can be used but I just can't figure out how. Furthermore, how can I estimate the parameters describing the skew normal distribution of a unidimensional dataset?


Solution

  • From the Wikipedia description,

    from scipy import linspace
    from scipy import pi,sqrt,exp
    from scipy.special import erf
    
    from pylab import plot,show
    
    def pdf(x):
        return 1/sqrt(2*pi) * exp(-x**2/2)
    
    def cdf(x):
        return (1 + erf(x/sqrt(2))) / 2
    
    def skew(x,e=0,w=1,a=0):
        t = (x-e) / w
        return 2 / w * pdf(t) * cdf(a*t)
        # You can of course use the scipy.stats.norm versions
        # return 2 * norm.pdf(t) * norm.cdf(a*t)
    
    
    n = 2**10
    
    e = 1.0 # location
    w = 2.0 # scale
    
    x = linspace(-10,10,n) 
    
    for a in range(-3,4):
        p = skew(x,e,w,a)
        plot(x,p)
    
    show()
    

    If you want to find the scale, location, and shape parameters from a dataset use scipy.optimize.leastsq, for example using e=1.0,w=2.0 and a=1.0,

    fzz = skew(x,e,w,a) + norm.rvs(0,0.04,size=n) # fuzzy data
    
    def optm(l,x):
        return skew(x,l[0],l[1],l[2]) - fzz
    
    print leastsq(optm,[0.5,0.5,0.5],(x,))
    

    should give you something like,

    (array([ 1.05206154,  1.96929465,  0.94590444]), 1)