Often I have written: {Min@#, Max@#} &
Yet this seems inefficient, as the expression must be scanned twice, once to find the minimum value, and once to find the maximum value. Is there a faster way to do this? The expression is often a tensor or array.
This beats it by a bit.
minMax = Compile[{{list, _Integer, 1}},
Module[{currentMin, currentMax},
currentMin = currentMax = First[list];
Do[
Which[
x < currentMin, currentMin = x,
x > currentMax, currentMax = x],
{x, list}];
{currentMin, currentMax}],
CompilationTarget -> "C",
RuntimeOptions -> "Speed"];
v = RandomInteger[{0, 1000000000}, {10000000}];
minMax[v] // Timing
I think it's a little faster than Leonid's version because Do
is a bit faster than For
, even in compiled code.
Ultimately, though, this is an example of the kind of performance hit you take when using a high level, functional programming language.
Addition in response to Leonid:
I don't think that the algorithm can account for all the time difference. Much more often than not, I think, both tests will be applied anyway. The difference between Do
and For
is measurable, however.
cf1 = Compile[{{list, _Real, 1}},
Module[{sum},
sum = 0.0;
Do[sum = sum + list[[i]]^2,
{i, Length[list]}];
sum]];
cf2 = Compile[{{list, _Real, 1}},
Module[{sum, i},
sum = 0.0;
For[i = 1, i <= Length[list],
i = i + 1, sum = sum + list[[i]]^2];
sum]];
v = RandomReal[{0, 1}, {10000000}];
First /@{Timing[cf1[v]], Timing[cf2[v]]}
{0.685562, 0.898232}