I'm not too sure how to deal with this and why I am getting this error.
raise ValueError('An operation has `None` for gradient. '
ValueError: An operation has `None` for gradient. Please make sure that all of your ops have a gradient defined (i.e. are differentiable). Common ops without gradient: K.argmax, K.round, K.eval.
So I am using a custom tripleloss for the loss function from this blog. https://omoindrot.github.io/triplet-loss and I am running it in keras which should not be an issue. But I cannot get it to work correctly with my model.
So this is the loss function from them. The other code that it needs is a direct copy:
def batch_hard_triplet_loss(embeddings, labels, margin = 0.3, squared=False):
# Get the pairwise distance matrix
pairwise_dist = pairwise_distances(embeddings, squared=squared)
mask_anchor_positive = _get_anchor_positive_triplet_mask(labels)
mask_anchor_positive = tf.to_float(mask_anchor_positive)
anchor_positive_dist = tf.multiply(mask_anchor_positive, pairwise_dist)
hardest_positive_dist = tf.reduce_max(anchor_positive_dist, axis=1, keepdims=True)
mask_anchor_negative = _get_anchor_negative_triplet_mask(labels)
mask_anchor_negative = tf.to_float(mask_anchor_negative)
max_anchor_negative_dist = tf.reduce_max(pairwise_dist, axis=1, keepdims=True)
anchor_negative_dist = pairwise_dist + max_anchor_negative_dist * (1.0 - mask_anchor_negative)
hardest_negative_dist = tf.reduce_min(anchor_negative_dist, axis=1, keepdims=True)
# Combine biggest d(a, p) and smallest d(a, n) into final triplet loss
triplet_loss = tf.maximum(hardest_positive_dist - hardest_negative_dist + margin, 0.0)
triplet_loss = tf.reduce_mean(triplet_loss)
#triplet_loss = k.mean(triplet_loss) # use keras mean
return triplet_loss
Now this is my model that I am using.
train_datagen = ImageDataGenerator(
preprocessing_function=preprocess_input,
....
validation_split=0.2) # set validation split
train_generator = train_datagen.flow_from_directory(
IMAGE_DIR,
target_size=(224, 224),
batch_size=BATCHSIZE,
class_mode='categorical',
subset='training') # set as training data
validation_generator = train_datagen.flow_from_directory(
IMAGE_DIR, # same directory as training data
target_size=(224, 224),
batch_size=BATCHSIZE,
class_mode='categorical',
subset='validation') # set as validation data
print("Initializing Model...")
# Get base model
input_layer = preloadmodel.get_layer('model_1').get_layer('input_1').input
layer_output = preloadmodel.get_layer('model_1').get_layer('glb_avg_pool').output
# Make extractor
base_network = Model(inputs=input_layer, outputs=layer_output)
# Define new model
input_images = Input(shape=(224, 224, 3), name='input_image') # input layer for images
#input_labels = Input(shape=(num_classes,), name='input_label') # input layer for labels
embeddings = base_network(input_images) # output of network -> embeddings
output = Dense(1, activation='sigmoid')(embeddings)
model = Model(inputs=input_images, outputs=output)
# Compile model
model.compile(loss=batch_hard_triplet_loss, optimizer='adam')
Ok I solved these issues with a lot of research. Now it didn't fix my problem as the code still does not work, but the issue of the loss function is fixed. Following this blog https://medium.com/@Bloomore/how-to-write-a-custom-loss-function-with-additional-arguments-in-keras-5f193929f7a0
I changes the loss function to this:
def batch_hard_triplet_loss(embeddings, labels, margin = 0.3, squared=False):
# Get the pairwise distance matrix
pairwise_dist = pairwise_distances(embeddings, squared=squared)
mask_anchor_positive = _get_anchor_positive_triplet_mask(labels)
mask_anchor_positive = tf.to_float(mask_anchor_positive)
anchor_positive_dist = tf.multiply(mask_anchor_positive, pairwise_dist)
hardest_positive_dist = tf.reduce_max(anchor_positive_dist, axis=1, keepdims=True)
mask_anchor_negative = _get_anchor_negative_triplet_mask(labels)
mask_anchor_negative = tf.to_float(mask_anchor_negative)
max_anchor_negative_dist = tf.reduce_max(pairwise_dist, axis=1, keepdims=True)
anchor_negative_dist = pairwise_dist + max_anchor_negative_dist * (1.0 - mask_anchor_negative)
hardest_negative_dist = tf.reduce_min(anchor_negative_dist, axis=1, keepdims=True)
def loss(y_true, y_pred):
# Combine biggest d(a, p) and smallest d(a, n) into final triplet loss
#triplet_loss = tf.maximum(hardest_positive_dist - hardest_negative_dist + margin, 0.0)
#triplet_loss = tf.reduce_mean(triplet_loss)
triplet_loss = k.maximum(hardest_positive_dist - hardest_negative_dist + margin, 0.0)
triplet_loss = k.mean(triplet_loss) # use keras mean
return triplet_loss
return loss
And then call it in the model like this:
batch_loss = batch_hard_triplet_loss(embeddings, input_labels, 0.4, False)
model = Model(inputs=input_images, outputs=embeddings)
model.compile(loss=batch_loss, optimizer='adam')
It now gives me these issues
tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'input_label' with dtype float and shape [?,99]
[[{{node input_label}}]]
But hey were moving on up. What the problem is keras only accepts loss with 2 parameters so you need to call the loss form another function like I did here.