I have adapted this retrain.py script to use with several pretraineds model, after training is done this generates a 'retrained_graph.pb' which I then read and try to use to run predictions on an image using this code:
def get_top_labels(image_data):
'''
Returns a list of labels and their probabilities
image_data: content of image as string
'''
with tf.compat.v1.Session() as sess:
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
predictions = sess.run(softmax_tensor, {'DecodeJpeg/contents:0': image_data})
return predictions
This works fine for inception_v3 model because it has a tensor called 'DecodeJpeg', other models I'm using such as inception_v4, mobilenet and inception_resnet_v2 don't.
My question is can I add an ops to the graph, like the one used in add_jpeg_decoding
in the retrain.py script so that I can afterwards use that for prediction ?
Would it be possible to do something like this:
predictions = sess.run(softmax_tensor, {image_data_tensor: image_data})
where image_data_tensor
is a variable that depends on what model I'm using ?
I looked through stackoverflow and couldn't find a question that solves my problem, I'd really appreciate any help with this, thanks. I need to at least know if it's possible. Sorry for repost I got no views on my first one.
So after some research, I figured out a way, leaving an answer here in case someone needs it. What you need to do is do the decoding yourself get a tensor from the image using t = read_tensor_from_image_file
found here, then you can run your predictions using this piece of code:
start = time.time()
results = sess.run(output_layer_name,
{input_layer_name: t})
end = time.time()
return results
usually input_layer_name = input:0
and output_layer_name = final_result:0
.