I'm currently trying to code a program that solves the heat equation, using the finite difference explicit method, and plots the solutions, but I encounter an issue I have not been able to correct by myself.
Could you please help me ?
Only figMass
and figEnergy
provoke this error, fig
plots normally.
Here are the code and the error :
import numpy as np
from bokeh.io import show, output_notebook
from bokeh.plotting import figure
from bokeh.layouts import column, row
output_notebook(hide_banner=True)
L = 10
v = 1
J = 1000
dx = L/(J+1)
def u0(x) :
return 2 - np.cos(2*np.pi*x/L)
def explicit_method(dt, T) :
N = int(T/dt)
r = v*dt/(dx**2)
#Construction of the recurrence matrix :
A = np.zeros((J+2, J+2))
A[0][0], A[0][1] = 1-r, r
A[-1][-1], A[-1][-2] = 1-r, r
for i in range(1, J+1) :
A[i][i], A[i][i-1], A[i][i+1] = 1-2*r, r, r
#Construction of Un :
U = np.zeros((J+2,N+1))
U[:,0] = np.array([u0(j*dx) for j in range(J+2)])
for n in range(1, N+1) :
U[:,n] = np.dot(A, U[:,n-1])
return U_1
x = np.linspace(0, L, J+2)
dt, T = 0.004, 20
N = int(T/dt)
U_1 = np.transpose(explicit_method(dt, T))
fig = figure(title="Conditions aux bords (1) dt = 0.004", width=490, height=300)
fig.line(x, U_1[0], color="red", legend="T = 0")
fig.line(x, U_1[N//20], color="green", legend="T = 1")
fig.line(x, U_1[N//4], color="blue", legend="T = 5")
fig.line(x, U_1[N], color="black", legend="T = 20")
Mass = [np.sum(U_1[n]) for n in range(N+1)]
figMass = figure(width=490, height=300)
figMass.line(np.arange(N+1), Mass, legend="Mass")
Energy = [np.linalg.norm(U_1[n]) for n in range(N+1)]
figEnergy = figure(width=490, height=300)
figEnergy.line(np.arange(N+1), Energy, color="red", legend="Energy")
show(row(fig, figMass, figEnergy))
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-3-e6cf303be061> in <module>
41 figEnergy.line(np.arange(N+1), Energy, color="red", legend="Energy")
42
---> 43 show(row(fig, figMass, figEnergy))
44
45 print(f"r = {v*dt/(dx**2)}")
~\Miniconda3\envs\map412\lib\site-packages\bokeh\io\showing.py in show(obj, browser, new, notebook_handle, notebook_url, **kw)
143 return run_notebook_hook(state.notebook_type, 'app', obj, state, notebook_url, **kw)
144
--> 145 return _show_with_state(obj, state, browser, new, notebook_handle=notebook_handle)
146
147 #-----------------------------------------------------------------------------
~\Miniconda3\envs\map412\lib\site-packages\bokeh\io\showing.py in _show_with_state(obj, state, browser, new, notebook_handle)
177
178 if state.notebook:
--> 179 comms_handle = run_notebook_hook(state.notebook_type, 'doc', obj, state, notebook_handle)
180 shown = True
181
~\Miniconda3\envs\map412\lib\site-packages\bokeh\io\notebook.py in run_notebook_hook(notebook_type, action, *args, **kw)
300 if _HOOKS[notebook_type][action] is None:
301 raise RuntimeError("notebook hook for %r did not install %r action" % notebook_type, action)
--> 302 return _HOOKS[notebook_type][action](*args, **kw)
303
304 #-----------------------------------------------------------------------------
~\Miniconda3\envs\map412\lib\site-packages\bokeh\io\notebook.py in show_doc(obj, state, notebook_handle)
510 from ..embed.notebook import notebook_content
511 comms_target = make_id() if notebook_handle else None
--> 512 (script, div, cell_doc) = notebook_content(obj, comms_target)
513
514 publish_display_data({HTML_MIME_TYPE: div})
~\Miniconda3\envs\map412\lib\site-packages\bokeh\embed\notebook.py in notebook_content(model, notebook_comms_target, theme)
83 # has models with the same IDs as they were started with
84 with OutputDocumentFor([model], apply_theme=theme, always_new=True) as new_doc:
---> 85 (docs_json, [render_item]) = standalone_docs_json_and_render_items([model])
86
87 div = div_for_render_item(render_item)
~\Miniconda3\envs\map412\lib\site-packages\bokeh\embed\util.py in standalone_docs_json_and_render_items(models, suppress_callback_warning)
295 docs_json = {}
296 for doc, (docid, _) in docs.items():
--> 297 docs_json[docid] = doc.to_json()
298
299 render_items = []
~\Miniconda3\envs\map412\lib\site-packages\bokeh\document\document.py in to_json(self)
843 # this is a total hack to go via a string, needed because
844 # our BokehJSONEncoder goes straight to a string.
--> 845 doc_json = self.to_json_string()
846 return loads(doc_json)
847
~\Miniconda3\envs\map412\lib\site-packages\bokeh\document\document.py in to_json_string(self, indent)
872 }
873
--> 874 return serialize_json(json, indent=indent)
875
876 def validate(self):
~\Miniconda3\envs\map412\lib\site-packages\bokeh\core\json_encoder.py in serialize_json(obj, pretty, indent, **kwargs)
159 indent = 2
160
--> 161 return json.dumps(obj, cls=BokehJSONEncoder, allow_nan=False, indent=indent, separators=separators, sort_keys=True, **kwargs)
162
163
~\Miniconda3\envs\map412\lib\json\__init__.py in dumps(obj, skipkeys, ensure_ascii, check_circular, allow_nan, cls, indent, separators, default, sort_keys, **kw)
236 check_circular=check_circular, allow_nan=allow_nan, indent=indent,
237 separators=separators, default=default, sort_keys=sort_keys,
--> 238 **kw).encode(obj)
239
240
~\Miniconda3\envs\map412\lib\json\encoder.py in encode(self, o)
197 # exceptions aren't as detailed. The list call should be roughly
198 # equivalent to the PySequence_Fast that ''.join() would do.
--> 199 chunks = self.iterencode(o, _one_shot=True)
200 if not isinstance(chunks, (list, tuple)):
201 chunks = list(chunks)
~\Miniconda3\envs\map412\lib\json\encoder.py in iterencode(self, o, _one_shot)
255 self.key_separator, self.item_separator, self.sort_keys,
256 self.skipkeys, _one_shot)
--> 257 return _iterencode(o, 0)
258
259 def _make_iterencode(markers, _default, _encoder, _indent, _floatstr,
ValueError: Out of range float values are not JSON compliant
The problem is you are using a plain Python list that contains NaN values:
Energy = [np.linalg.norm(U_1[n]) for n in range(N+1)]
When you use a plain list, it gets serialized as plain JSON. Unfortunately, due to (IMO) a glaring oversight, the JSON specification itself does not support transmitting NaN values. There is nothing that can be done about that. However, Bokeh supports encoding NaN values in non-JSON encodings. But these are only available when float32 or float64 NumPy arrays are used. You will have to put your data in one of those.