LightGBM predict
method with pred_contrib=True
returns an array of shape =(n_samples, (n_features + 1) * n_classes)
.
What is the order of data in the second dimension of this array?
In other words, there are two questions:
shape = (n_samples, n_features + 1, n_classes)
or shape = (n_samples, n_classes, n_features + 1)
?n_features
entries, one for each feature, and a (useless) entry for the contribution not related to any feature. What is the order of these entries: feature contributions in the entries 1,..., n_features
in the same order they appear in the dataset, with the remaining (useless) entry at index 0, or some other way?The answers are as follows:
(n_samples, n_classes, n_features + 1)
.n_features
in the same order they appear in the dataset, with the remaining (useless) entry at index 0.The following code shows it convincingly:
import lightgbm, pandas, numpy
params = {'objective': 'multiclass', 'num_classes': 4, 'num_iterations': 10000,
'metric': 'multiclass', 'early_stopping_rounds': 10}
train_df = pandas.DataFrame({'f0': [0, 1, 2, 3] * 50, 'f1': [0, 0, 1] * 66 + [1, 2]}, dtype=float)
val_df = train_df.copy()
train_target = pandas.Series([0, 1, 2, 3] * 50)
val_target = pandas.Series([0, 1, 2, 3] * 50)
train_set = lightgbm.Dataset(train_df, train_target)
val_set = lightgbm.Dataset(val_df, val_target)
model = lightgbm.train(params=params, train_set=train_set, valid_sets=[val_set, train_set])
feature_contribs = model.predict(val_df, pred_contrib=True)
print('Shape of SHAP:', feature_contribs.shape)
# Shape of SHAP: (200, 12)
print('Averages over samples:', numpy.mean(feature_contribs, axis=0))
# Averages over samples: [ 3.99942301e-13 -4.02281771e-13 -4.30029167e+00 -1.90606677e-05
# 1.90606677e-05 -4.04157656e+00 2.24205077e-05 -2.24205077e-05
# -4.04265615e+00 -3.70370401e-15 5.20335728e-18 -4.30029167e+00]
feature_contribs.shape = (200, 4, 3)
print('Mean feature contribs:', numpy.mean(feature_contribs, axis=(0, 1)))
# Mean feature contribs: [ 8.39960111e-07 -8.39960113e-07 -4.17120401e+00]
(Each output appears as a comment in the following line.)
The explanation is as follows.
I have created a dataset with two features and with labels identical to the second of these features.
I would expect significant contribution from the second feature only.
After averaging the SHAP output over the samples, we get an array of the shape (12,) with nonzero values at the positions 2, 5, 8, 11 (zero-based).
This shows that the correct shape of this array is (4, 3).
After reshaping this way and averaging over the samples and the classes, we get an array of the shape (3,) with the nonzero entry at the end.
This shows that the last entry of this array corresponds to the last feature. This means that the entry at the position 0 does not correspond to any feature and the following entries correspond to features.