Search code examples
pythontensorflowkerasdeep-learningloss-function

Training a model with single output on multiple losses keras


I am building an image segmentation model using keras and I want to train my model on multiple loss functions. I have seen this link but I am looking for a simpler and straight-forward solutions for this situation as my loss functions are quite complex. Can someone tell me how to build a model with single output with multiple losses in keras.


Solution

  • You can use multiple losses with one output using weighted loss, which is a sum of your losses multiplied by weight. Create your custom loss which will return a sum of other losses with coefficients and pass it to model.compile. There is an example here.