I am working on an RL problem and I created a class to initialize the model and other parameters. The code is as follows:
class Agent:
def __init__(self, state_size, is_eval=False, model_name=""):
self.state_size = state_size
self.action_size = 20 # measurement, CNOT, bit-flip
self.memory = deque(maxlen=1000)
self.inventory = []
self.model_name = model_name
self.is_eval = is_eval
self.done = False
self.gamma = 0.95
self.epsilon = 1.0
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
def model(self):
model = Sequential()
model.add(Dense(units=16, input_dim=self.state_size, activation="relu"))
model.add(Dense(units=32, activation="relu"))
model.add(Dense(units=8, activation="relu"))
model.add(Dense(self.action_size, activation="softmax"))
model.compile(loss="categorical_crossentropy", optimizer=Adam(lr=0.003))
return model
def act(self, state):
options = self.model.predict(state)
return np.argmax(options[0]), options
I want to run it for only one iteration, hence I create an object and I pass a vector of length 16
like this:
agent = Agent(density.flatten().shape)
state = density.flatten()
action, probs = agent.act(state)
However, I get the following error:
AttributeError Traceback (most recent call last) <ipython-input-14-4f0ff0c40f49> in <module>
----> 1 action, probs = agent.act(state)
<ipython-input-10-562aaf040521> in act(self, state)
39 # return random.randrange(self.action_size)
40 # model = self.model()
---> 41 options = self.model.predict(state)
42 return np.argmax(options[0]), options
43
AttributeError: 'function' object has no attribute 'predict'
What's the issue? I checked some other people's codes as well, like this and I think mine is also very similar.
Let me know.
EDIT:
I changed the argument in Dense
from input_dim
to input_shape
and self.model.predict(state)
to self.model().predict(state)
.
Now when I run the NN for one input data of shape (16,1)
, I get the following error:
ValueError: Error when checking input: expected dense_1_input to have 3 dimensions, but got array with shape (16, 1)
And when I run it with shape (1,16)
, I get the following error:
ValueError: Error when checking input: expected dense_1_input to have 3 dimensions, but got array with shape (1, 16)
What should I do in this case?
in last code block,
def act(self, state):
options = self.model.predict(state)
return np.argmax(options[0]), options
self.model is a function which is returning a model, it should be self.model().predict(state)