I'm comparing the language used by some authors with data downloaded from the Project Gutenberg site but I'm having some trouble with my tibble manipulation. My end goal is to make a plot comparing frequency of word usage by Herman Melville and Lewis Carroll compared to Washington Irving. However, my tibble doesn't have an Irving column which is problematic when I then attempt to call it in my ggplot.
I'm expecting my frequency
tibble to look like
# A tibble: 72,984 x 4
word Irving author proportion
<chr> <dbl> <chr> <dbl>
1 a'dale 0.00000907 Melville NA
2 aa NA Melville 0.0000246
3 ab NA Melville NA
4 aback NA Melville 0.0000369
5 abana NA Melville 0.0000123
6 abandon 0.0000363 Melville 0.0000861
7 abandoned 0.000163 Melville 0.000172
8 abandoning 0.0000181 Melville NA
9 abandonment 0.00000907 Melville 0.0000123
10 abasement 0.0000181 Melville 0.0000123
# ... with 72,974 more rows
but instead it looks like
# A tibble: 72,984 x 3
word author proportion
<chr> <chr> <dbl>
1 a'dale Melville NA
2 aa Melville 0.0000246
3 ab Melville NA
4 aback Melville 0.0000369
5 abana Melville 0.0000123
6 abandon Melville 0.0000861
7 abandoned Melville 0.000172
8 abandoning Melville NA
9 abandonment Melville 0.0000123
10 abasement Melville 0.0000123
# ... with 72,974 more rows
and I'm not sure what I'm doing wrong when I gather to make the frequency tibble.
Code
# Import libraries
library(tidyverse) # dplyr, tidyr, stringr, ggplot2
library(tidytext)
library(gutenbergr)
# Download four works from each author
wirving <- gutenberg_download(c(49872, 41, 14228, 13514))
hmelville <- gutenberg_download(c(15, 4045, 28656, 2694))
lcarroll <- gutenberg_download(c(19033, 620, 12, 4763))
# tidy each author
tidy_wirving <- wirving %>%
unnest_tokens(word, text) %>%
mutate(word = str_extract(word, "[a-z']+")) %>%
anti_join(stop_words, by = "word")
tidy_hmelville <- hmelville %>%
unnest_tokens(word, text) %>%
mutate(word = str_extract(word, "[a-z']+")) %>%
anti_join(stop_words, by = "word")
tidy_lcarroll <- lcarroll %>%
unnest_tokens(word, text) %>%
mutate(word = str_extract(word, "[a-z']+")) %>%
anti_join(stop_words, by = "word")
# calculate word frequency
frequency_by_word_across_authors <-
bind_rows(mutate(tidy_wirving, author = "Irving"),
mutate(tidy_hmelville, author = "Melville"),
mutate(tidy_lcarroll, author = "Carroll")) %>%
mutate(word = str_extract(word, "[a-z']+")) %>%
count(author, word) %>%
group_by(author) %>%
mutate(proportion = n /sum(n)) %>%
select(-n) %>%
spread(author, proportion)
# compare frequency of Melville and Carroll against Irving
frequency <- frequency_by_word_across_authors %>%
gather(author, proportion,`Melville`:`Carroll`)
ggplot(frequency,
aes(x = proportion,
y =`Irving`,
color = abs(`Irving`- proportion))) +
geom_abline(color = "gray40",
lty = 2) +
geom_jitter(alpha = 0.1,
size = 2.5,
width = 0.3,
height = 0.3) +
geom_text(aes(label = word),
check_overlap = TRUE,
vjust = 1.5) +
scale_x_log10(labels = percent_format()) +
scale_y_log10(labels = percent_format()) +
scale_color_gradient(limits = c(0, 0.001),
low = "darkslategray4",
high = "gray75") +
facet_wrap(~author, ncol = 2) +
theme(legend.position="none") +
labs(y = "Irving Washington", x = NULL)
# Error in FUN(X[[i]], ...) : object 'Irving' not found
The issue is how you are using gather()
; the two columns that you want to gather are not next to each other so you don't want to use :
:
frequency <- frequency_by_word_across_authors %>%
gather(author, proportion, Carroll, Melville)
ggplot(frequency,
aes(x = proportion,
y = Irving,
color = abs(Irving - proportion))) +
geom_abline(color = "gray40",
lty = 2) +
geom_jitter(alpha = 0.1,
size = 2.5,
width = 0.3,
height = 0.3) +
geom_text(aes(label = word),
check_overlap = TRUE,
vjust = 1.5) +
scale_x_log10(labels = percent_format()) +
scale_y_log10(labels = percent_format()) +
scale_color_gradient(limits = c(0, 0.001),
low = "darkslategray4",
high = "gray75") +
facet_wrap(~author, ncol = 2) +
theme(legend.position="none") +
labs(y = "Irving Washington", x = NULL)
Created on 2019-11-01 by the reprex package (v0.3.0)