This is the standard MKT expression (here also translated to Proj.4 string) of Albers conicEqualArea for official Statistical Grid of Brazil:
PROJCS["Conica_Equivalente_de_Albers_Brasil",
GEOGCS["GCS_SIRGAS2000",
DATUM["D_SIRGAS2000",
SPHEROID["Geodetic_Reference_System_of_1980",6378137,298.2572221009113]],
PRIMEM["Greenwich",0],
UNIT["Degree",0.017453292519943295]],
PROJECTION["Albers"],
PARAMETER["standard_parallel_1",-2],
PARAMETER["standard_parallel_2",-22],
PARAMETER["latitude_of_origin",-12],
PARAMETER["central_meridian",-54],
PARAMETER["false_easting",5000000],
PARAMETER["false_northing",10000000],
UNIT["Meter",1]]
The DATUM is the WGS 84 ("SIRGAS2000" is a alias for it).
How to translate all details to the D3.js v5 parametrization?
I try the obvious, as center and parallels, but it was not sufficient
var projection = d3.geoConicEqualArea()
.parallels([-2,-22]) // IS IT?
.scale(815)
//.rotate([??,??]) // HERE THE PROBLEM...
.center([-54, -12]) // IS IT?
PS: where the D3 documentation for it? The D3 source-code of geoConicEqualArea() have no clues.
The parts that translate to a d3 Albers projection are as follows:
PROJECTION["Albers"],
PARAMETER["standard_parallel_1",-2],
PARAMETER["standard_parallel_2",-22],
PARAMETER["latitude_of_origin",-12],
PARAMETER["central_meridian",-54],
You have the parallels, now you need to rotate. Also note, for any D3 projection, the rotation is applied to the centering coordinates. Generally, you'll want to rotate on the x and center on the y:
d3.geoAlbers()
.parallels([-2,-22])
.center([0,-12])
.rotate([54,0])
.translate([width/2,height/2])
.scale(k)
I've rotated in the opposite direction along the x axis (rotated the earth under me so that I'm overtop of the central meridian, hence my rotation by -x). I've then centered on the y. Lastly I translate so that the intersection of the central longitude and meridian is centered in the map and apply a scale value that is appropriate.
If I want to center on a different area but keep the projection the same, I can modify projection.center()
, but keep in mind that the coordinates provided here are relative to the rotation. I can also use projection.fitSize()
or projection.fitExtent()
, both of which set 'translate' and 'scale' values for the projection. None of center/scale/translate change the distortion in the D3 projection.
Of course this isn't a true replication of your projection as the coordinate space units are pixels, you will remain unable to measure distances in meters directly without some extra work.
See also