I have implemented a custom mean average error (MAE) loss in lightgbm. The gradient is nonzero, but the loss stays constant. How could that be?
My implementation:
def abs_obj(preds, dtrain):
y_true = dtrain.get_label()
a = preds - y_true
grad = np.sign(a)
hess = np.zeros(len(a))
return grad, hess
def abs_eval(preds, dtrain):
y_true = dtrain.get_label()
loss = np.abs(preds - y_true).sum()
return "error", loss, False
A minimal reproducible example: the loss stays constant.
dtrain = pd.DataFrame({'x':np.random.rand(100),
'y':np.random.rand(100)})
ytrain = dtrain.x + 2 * dtrain.y
dval = dtrain
yval = ytrain
lgb_train = lgb.Dataset(dtrain, ytrain)
lgb_valid = lgb.Dataset(dval, yval)
params = {'objective':None,
'learning_rate':30,
'num_leaves':33}
clf = lgb.train(params,
lgb_train,
valid_sets=[lgb_valid],
num_boost_round=10,
verbose_eval=1,
fobj=abs_obj,
feval=abs_eval)
For a custom loss in lightgbm, you need a twice differentiable function with a positive second derivative.
To speed up their algorithm, lightgbm uses Newton's approximation to find the optimal leaf value:
y = - L' / L''
(See this blogpost for details).
When the second derivative is zero or the function is not twice differentiable, this approximation is very wrong. Lightgbm has built-in objective functions which do not fit this criterion, such as MAE. For these functions they have different, special implementations.