Search code examples
pythonpython-3.xpandasmatplotlibseaborn

How to remove or hide x-axis labels from a plot


I have a boxplot and need to remove the x-axis ('user_type' and 'member_gender') label. How do I do this given the below format?

sb.boxplot(x="user_type", y="Seconds", data=df, color = default_color, ax = ax[0,0], sym='').set_title('User-Type (0=Non-Subscriber, 1=Subscriber)')
sb.boxplot(x="member_gender", y="Seconds", data=df, color = default_color, ax = ax[1,0], sym='').set_title('Gender (0=Male, 1=Female, 2=Other)')

Solution

    • After creating the boxplot, use .set().
    • .set(xticklabels=[]) should remove tick labels.
      • This doesn't work if you use .set_title(), but you can use .set(title='').
      • Do not use sns.boxplot(...).set(xticklabels=[]) because, while this works, the object type is changed from matplotlib.axes._axes.Axes for sns.boxplot(...), to list.
    • .set(xlabel=None) should remove the axis label.
    • .tick_params(bottom=False) will remove the ticks.
    • Similarly, for the y-axis: How to remove or hide y-axis ticklabels from a plot
    • Tested in python 3.11, pandas 1.5.2, matplotlib 3.6.2, seaborn 0.12.1

    From the OP: No sample data

    fig, ax = plt.subplots(2, 1)
    
    g1 = sb.boxplot(x="user_type", y="Seconds", data=df, color = default_color, ax = ax[0], sym='')
    g1.set(xticklabels=[])
    g1.set(title='User-Type (0=Non-Subscriber, 1=Subscriber)')
    g1.set(xlabel=None)
    
    g2 = sb.boxplot(x="member_gender", y="Seconds", data=df, color = default_color, ax = ax[1], sym='')
    g2.set(xticklabels=[])
    g2.set(title='Gender (0=Male, 1=Female, 2=Other)')
    g2.set(xlabel=None)
    

    Example 1

    With xticks and xlabel

    import seaborn as sns
    import matplotlib.pyplot as plt
    
    # load data
    exercise = sns.load_dataset('exercise')
    pen = sns.load_dataset('penguins')
    
    # create figures
    fig, ax = plt.subplots(2, 1, figsize=(8, 8))
    
    # plot data
    g1 = sns.boxplot(x='time', y='pulse', hue='kind', data=exercise, ax=ax[0])
    
    g2 = sns.boxplot(x='species', y='body_mass_g', hue='sex', data=pen, ax=ax[1])
    
    plt.show()
    

    enter image description here

    Without xticks and xlabel

    fig, ax = plt.subplots(2, 1, figsize=(8, 8))
    
    g1 = sns.boxplot(x='time', y='pulse', hue='kind', data=exercise, ax=ax[0])
    
    g1.set(xticklabels=[])  # remove the tick labels
    g1.set(title='Exercise: Pulse by Time for Exercise Type')  # add a title
    g1.set(xlabel=None)  # remove the axis label
    
    g2 = sns.boxplot(x='species', y='body_mass_g', hue='sex', data=pen, ax=ax[1])
    
    g2.set(xticklabels=[])  
    g2.set(title='Penguins: Body Mass by Species for Gender')
    g2.set(xlabel=None)
    g2.tick_params(bottom=False)  # remove the ticks
    
    plt.show()
    

    enter image description here

    Example 2

    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    
    # sinusoidal sample data
    sample_length = range(1, 1+1) # number of columns of frequencies
    rads = np.arange(0, 2*np.pi, 0.01)
    data = np.array([(np.cos(t*rads)*10**67) + 3*10**67 for t in sample_length])
    df = pd.DataFrame(data.T, index=pd.Series(rads.tolist(), name='radians'), columns=[f'freq: {i}x' for i in sample_length])
    df.reset_index(inplace=True)
    
    # plot
    fig, ax = plt.subplots(figsize=(8, 8))
    ax.plot('radians', 'freq: 1x', data=df)
    
    # or skip the previous two lines and plot df directly
    # ax = df.plot(x='radians', y='freq: 1x', figsize=(8, 8), legend=False)
    

    enter image description here

    Remove Labels

    # plot
    fig, ax = plt.subplots(figsize=(8, 8))
    ax.plot('radians', 'freq: 1x', data=df)
    
    # or skip the previous two lines and plot df directly
    # ax = df.plot(x='radians', y='freq: 1x', figsize=(8, 8), legend=False)
    
    ax.set(xticklabels=[])  # remove the tick labels
    ax.tick_params(bottom=False)  # remove the ticks
    

    enter image description here