how can i find a respective words vector from previous trained word2vec model?
data = {'one': array([-0.06590105, 0.01573388, 0.00682817, 0.53970253, -0.20303348,
-0.24792041, 0.08682659, -0.45504045, 0.89248925, 0.0655603 ,
......
-0.8175681 , 0.27659689, 0.22305458, 0.39095637, 0.43375066,
0.36215973, 0.4040089 , -0.72396156, 0.3385369 , -0.600869 ],
dtype=float32),
'two': array([ 0.04694849, 0.13303463, -0.12208422, 0.02010536, 0.05969441,
-0.04734801, -0.08465996, 0.10344813, 0.03990637, 0.07126121,
......
0.31673026, 0.22282903, -0.18084198, -0.07555179, 0.22873943,
-0.72985399, -0.05103955, -0.10911274, -0.27275378, 0.01439812],
dtype=float32),
'three': array([-0.21048863, 0.4945509 , -0.15050395, -0.29089224, -0.29454648,
0.3420335 , -0.3419629 , 0.87303966, 0.21656844, -0.07530259,
......
-0.80034876, 0.02006451, 0.5299498 , -0.6286509 , -0.6182588 ,
-1.0569025 , 0.4557548 , 0.4697938 , 0.8928275 , -0.7877308 ],
dtype=float32),
'four': ......
}
now i want to obtain like
word = "one"
wordvector = data.get_vector(word)
and returns
[-0.06590105, 0.01573388, 0.00682817, 0.53970253, -0.20303348,
-0.24792041, 0.08682659, -0.45504045, 0.89248925, 0.0655603 ,
......
-0.8175681 , 0.27659689, 0.22305458, 0.39095637, 0.43375066,
0.36215973, 0.4040089 , -0.72396156, 0.3385369 , -0.600869 ]
one_array = data['one']
data
is a dictionary. To get the value of a dictionary for a certain key, you call value = dict[key]
.
With one_list = data['one'].tolist()
, you get the wordvector of the word 'one' as a list, which seems to be your expected output.