I have some finite element code I have programmed in Fortran 95 that I have optimised so that I can now get well over 16Mil. elements working under 2GB of memory footprint.
The source function for my code is not smooth so I am using a (stratified) Monte-Carlo method to integrate, which requires a random number generator to select sample locations
I have tried compiling with gfortran-9 using -fopenmp -Ofast -ftree-parallelize-loops=4
but the loop with the random number generator won't go parallel. I tried do concurrent
but obviously that didn't work because random_number
isn't 'pure'. https://stackoverflow.com/a/32637737/2372254
I also tried blocking my loop but that didn't work either.
Here is the code I am talking about
do k=1,n_els ! total elements is n_els**2. This is block
do i=1+ (k-1)*n_els ,k*n_els
supp_vec = 0
integ_vec = 0.0_wp
! in this subroutine I call random_number
call do_element(ind, n_els, i, num_points_per_strat, &
strat_rows, strat_cols, supp_vec, integ_vec)
do j=1, 4
sc_vec(supp_vec(j) ) = integ_vec(j)
end do
! give some info about progress
if (mod( i , (n_els**2)/10) == 0) print*, i*10/((n_els**2)/10), "% done"
end do
end do
It seems I could write blocks to a file and call n
different instances of the routine. I figure there must be a cleaner way to do that. Any tips on how to get that going faster?
I was considering writing a block-worth of points (depending on memory limits) to an array first and supplying that in the subroutine call. Before I try that I thought I would see if anybody had any advice about a better way. It would be good to keep the memory footprint down where possible.
As of version 7 and newer GFortran has a parallel random number generator. When implementing it, here's the OpenMP code I used to verify that the performance indeed scales with increasing numbers of threads (from https://gcc.gnu.org/ml/gcc-patches/2015-12/msg02110.html ):
! Benchmark generating random numbers
! Janne Blomqvist 2015
program randbench
#ifdef _OPENMP
use omp_lib
#endif
implicit none
integer, parameter :: dp=kind(0.d0) ! double precision
integer, parameter :: i64 = selected_int_kind(18) ! At least 64-bit integer
#ifdef _OPENMP
print *, "Using up to ", omp_get_max_threads(), " threads."
#endif
call genr4
call genr8
contains
subroutine genr4
integer, parameter :: n = int(1e7)
real, save :: r(n)
integer :: i
integer(i64) :: t1, t2, td
#ifdef _OPENMP
integer :: blocks, blocksize, l, h
#endif
Print *, "Generate default real random variables"
call system_clock (t1)
!$omp parallel do private(i)
do i = 1, n
call random_number(r(i))
end do
!$omp end parallel do
call system_clock (t2)
td = t2 - t1
print *, "Generating ", n, " default reals individually took ", td, " ticks."
call system_clock (t1)
#ifdef _OPENMP
blocks = omp_get_max_threads()
blocksize = n / blocks
!$omp parallel do private(l,h,i)
do i = 0, blocks - 1
l = i * blocksize + 1
h = l + blocksize - 1
!print *, "Low: ", l, " High: ", h
call random_number(r(l:h))
end do
#else
call random_number(r)
#endif
Call system_clock (t2)
print *, "Generating ", n, " default reals as an array took ", t2-t1, &
" ticks. => ind/arr = ", real(td, dp) / (t2-t1)
end subroutine genr4
subroutine genr8
integer, parameter :: n = int(1e7)
real(dp), save :: r(n)
integer :: i
integer(i64) :: t1, t2, td
#ifdef _OPENMP
integer :: blocks, blocksize, l, h
#endif
print *, "Generate double real random variables"
call system_clock (t1)
!$omp parallel do
do i = 1, n
call random_number(r(i))
end do
call system_clock (t2)
td = t2 - t1
print *, "Generating ", n, " double reals individually took ", td, " ticks."
call system_clock (t1)
#ifdef _OPENMP
blocks = omp_get_max_threads()
blocksize = n / blocks
!$omp parallel do private(l,h,i)
do i = 0, blocks - 1
l = i * blocksize + 1
h = l + blocksize - 1
!print *, "Low: ", l, " High: ", h
call random_number(r(l:h))
end do
#else
call random_number(r)
#endif
call system_clock (t2)
print *, "Generating ", n, " double reals as an array took ", t2-t1, &
" ticks. => ind/arr = ", real(td, dp) / (t2 -t1)
end subroutine genr8
end program