In Pascal's Triangle the number at the edge of the triangle are all 1, and each number inside the triangle is the sum of the two numbers above it. A sample Pascal's triangle would look like below.
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
I wrote a program that computes the elements of Pascal's triangle using below technique.
/**
* Can I make it tail recursive???
*
* @param c column
* @param r row
* @return
*/
def pascalTriangle(c: Int, r: Int): Int = {
if (c == 0 || (c == r)) 1
else
pascalTriangle(c-1, r-1) + pascalTriangle(c, r - 1)
}
So, for example if
i/p: pascalTriangle(0,2)
o/p: 1.
i/p: pascalTriangle(1,3)
o/p: 3.
Above program is correct and giving the correct output as expected. My question is, is it possible to write tail recursive version of above algorithm? How?
Try
def pascalTriangle(c: Int, r: Int): Int = {
@tailrec
def loop(c0: Int, r0: Int, pred: Array[Int], cur: Array[Int]): Int = {
cur(c0) = (if (c0 > 0) pred(c0 - 1) else 0) + (if (c0 < r0) pred(c0) else 0)
if ((c0 == c) && (r0 == r)) cur(c0)
else if (c0 < r0) loop(c0 + 1, r0, pred, cur)
else loop(0, r0 + 1, cur, new Array(_length = r0 + 2))
}
if ((c == 0) && (r == 0)) 1
else loop(0, 1, Array(1), Array(0, 0))
}
or
import scala.util.control.TailCalls._
def pascalTriangle(c: Int, r: Int): Int = {
def hlp(c: Int, r: Int): TailRec[Int] =
if (c == 0 || (c == r)) done(1)
else for {
x <- tailcall(hlp(c - 1, r - 1))
y <- tailcall(hlp(c, r - 1))
} yield (x + y)
hlp(c, r).result
}
or
import cats.free.Trampoline
import cats.free.Trampoline.{defer, done}
import cats.instances.function._
def pascalTriangle(c: Int, r: Int): Int = {
def hlp(c: Int, r: Int): Trampoline[Int] =
if (c == 0 || (c == r)) done(1)
else for {
x <- defer(hlp(c - 1, r - 1))
y <- defer(hlp(c, r - 1))
} yield (x + y)
hlp(c, r).run
}
http://eed3si9n.com/herding-cats/stackless-scala-with-free-monads.html