I am building a basic seq2seq autoencoder, but I'm not sure if I'm doing it correctly.
model = Sequential()
# Encoder
model.add(LSTM(32, activation='relu', input_shape =(timesteps, n_features ), return_sequences=True))
model.add(LSTM(16, activation='relu', return_sequences=False))
model.add(RepeatVector(timesteps))
# Decoder
model.add(LSTM(16, activation='relu', return_sequences=True))
model.add(LSTM(32, activation='relu', return_sequences=True))
model.add(TimeDistributed(Dense(n_features)))'''
The model is then fit using a batch size parameter
model.fit(data, data,
epochs=30,
batch_size = 32)
The model is compiled with the mse
loss function and seems to learn.
To get the encoder output for the test data, I am using a K function:
get_encoder_output = K.function([model.layers[0].input],
[model.layers[1].output])
encoder_output = get_encoder_output([test_data])[0]
My first question is whether the model is specified correctly. In particular whether the RepeatVector layer is needed. I'm not sure what it is doing. What if I omit it and specify the preceding layer with return_sequences = True
?
My second question is whether I need to tell get_encoder_output
about the batch_size
used in training?
Thanks in advance for any help on either question.
This might prove useful to you:
As a toy problem I created a seq2seq model for predicting the continuation of different sine waves.
This was the model:
def create_seq2seq():
features_num=5
latent_dim=40
##
encoder_inputs = Input(shape=(None, features_num))
encoded = LSTM(latent_dim, return_state=False ,return_sequences=True)(encoder_inputs)
encoded = LSTM(latent_dim, return_state=False ,return_sequences=True)(encoded)
encoded = LSTM(latent_dim, return_state=False ,return_sequences=True)(encoded)
encoded = LSTM(latent_dim, return_state=True)(encoded)
encoder = Model (input=encoder_inputs, output=encoded)
##
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
encoder_states = [state_h, state_c]
decoder_inputs=Input(shape=(1, features_num))
decoder_lstm_1 = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_lstm_2 = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_lstm_3 = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_lstm_4 = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_dense = Dense(features_num)
all_outputs = []
inputs = decoder_inputs
states_1=encoder_states
# Placeholder values:
states_2=states_1; states_3=states_1; states_4=states_1
###
for _ in range(1):
# Run the decoder on the first timestep
outputs_1, state_h_1, state_c_1 = decoder_lstm_1(inputs, initial_state=states_1)
outputs_2, state_h_2, state_c_2 = decoder_lstm_2(outputs_1)
outputs_3, state_h_3, state_c_3 = decoder_lstm_3(outputs_2)
outputs_4, state_h_4, state_c_4 = decoder_lstm_4(outputs_3)
# Store the current prediction (we will concatenate all predictions later)
outputs = decoder_dense(outputs_4)
all_outputs.append(outputs)
# Reinject the outputs as inputs for the next loop iteration
# as well as update the states
inputs = outputs
states_1 = [state_h_1, state_c_1]
states_2 = [state_h_2, state_c_2]
states_3 = [state_h_3, state_c_3]
states_4 = [state_h_4, state_c_4]
for _ in range(149):
# Run the decoder on each timestep
outputs_1, state_h_1, state_c_1 = decoder_lstm_1(inputs, initial_state=states_1)
outputs_2, state_h_2, state_c_2 = decoder_lstm_2(outputs_1, initial_state=states_2)
outputs_3, state_h_3, state_c_3 = decoder_lstm_3(outputs_2, initial_state=states_3)
outputs_4, state_h_4, state_c_4 = decoder_lstm_4(outputs_3, initial_state=states_4)
# Store the current prediction (we will concatenate all predictions later)
outputs = decoder_dense(outputs_4)
all_outputs.append(outputs)
# Reinject the outputs as inputs for the next loop iteration
# as well as update the states
inputs = outputs
states_1 = [state_h_1, state_c_1]
states_2 = [state_h_2, state_c_2]
states_3 = [state_h_3, state_c_3]
states_4 = [state_h_4, state_c_4]
# Concatenate all predictions
decoder_outputs = Lambda(lambda x: K.concatenate(x, axis=1))(all_outputs)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
#model = load_model('pre_model.h5')
print(model.summary()
return (model)