import and bind a list of xlsx file with unpredicted irrelevant first column. (Have to eliminate it but you don't know which file contains irrelevant first column.)
# sample : remind that the xlsx file originally don't have any column names
DT1 = data.table(a = c("TYPE","X","Y","Z"), b = c("MONTH","Jan","Feb","Mar"))
DT2 = data.table(a = c(NA,NA,NA,"random_irrelevant_vale") ,b = c("TYPE","X","Y","W"), c = c("MONTH","Apr","Feb","May"))
# give "idcol" & col_names = FALSE is a must
PATH_LIST<- list.files(path = "PATH",
pattern = "*.xlsx",full.names = TRUE)
names(PATH_LIST) <- basename(PATH_LIST)
rbindlist(lapply(PATH_LIST,import,col_names = FALSE,
col_types = "text"),
idcol = "source",fill = TRUE)
# EXPECTED OUTPUT
TYPE MONTH
X Jan
Y Feb
Z Mar
X Apr
Y Feb
W May
How can i achieve this between the step of import and rbind them ?
Assuming that the relevant columns are at the back and there are some files with no irrelevant columns, you can try something like:
DTls <- lapply(list.files(pattern="DT(.*).csv"), fread, header=FALSE)
m <- min(lengths(DTls))
rbindlist(
lapply(DTls, function(DT) {
cols <- head(names(DT), length(DT)-m)
if (length(cols) > 0)
DT[, (cols) := NULL]
DT
})
)
output:
V1 V2
1: TYPE MONTH
2: X Jan
3: Y Feb
4: Z Mar
5: TYPE MONTH
6: X Apr
7: Y Feb
8: W May
data files:
library(data.table)
DT1 = data.table(a = c("TYPE","X","Y","Z"), b = c("MONTH","Jan","Feb","Mar"))
DT2 = data.table(a = c(NA,NA,NA,"random_irrelevant_vale") ,b = c("TYPE","X","Y","W"), c = c("MONTH","Apr","Feb","May"))
fwrite(DT1, "DT1.csv", col.names=FALSE)
fwrite(DT2, "DT2.csv", col.names=FALSE)