Search code examples
pythonpandasdataframecrosstab

Difference across crosstab


I am calculating the shares across two dimensions (lets say product type and region) for individual years:

for year in years:
    subset = df[df["year"] == year]
    total_value = subset["Sales"].sum()
    test = pd.crosstab(subset["region"], subset["type"], values= subset["Sales"], aggfunc='sum')
    test = test.div(total_value)
    test = test.mul(100)
    test = test.fillna(0).applymap('{:,.2f}'.format)
    test = test[test.columns].astype(float)

I am getting something like this (shares per year):

               P1      P2     P3      P4      P5
East          7.87   0.19    3.62   18.03    4.21
North         2.61   0.00    1.43    2.72    1.58
South         4.86   0.00    3.28    4.36    5.02
West          8.56   0.00    7.30   14.34   10.01

However, now I want to calculate the share differences per year and get the average difference for different time periods (e.g. year1-5, vs. year6-10).

I would know how to do it in a 1d form, but for that I would have to create a single column for every row/column combination. However, the final output I need again as a 4x5 dataframe.


Solution

  • IIUC, per your approach, you can store all the annual data in an array and work on that.

    But better yet, create a double-index dataframe:

    # toy data
    np.random.seed(1)
    df = pd.DataFrame({'year': np.random.randint(2010,2020, 1000),
                       'region':np.random.choice(['E','N','S','W'], 1000),
                       'type': np.random.choice(range(5), 1000),
                       'Sales': np.random.randint(0,100, 1000)})
    
    # annual sale by number
    new_df = df.groupby(['year','region','type']).Sales.sum().unstack('type')
    
    # annual sale percentage
    # unstack is for difference and rolling
    new_df = new_df.div(new_df.sum(1), axis='rows').mul(100).unstack('region')
    
    # now we take difference Y-o-Y and sum over rolling 5 years
    new_df = new_df.diff().abs().rolling(5).sum().stack('region')
    

    Output:

    type                 0          1          2          3           4
    year region                                                        
    2015 E       44.474332  64.931846  61.957656  30.060912   45.492996
         N       36.204057  52.299241  45.474781        NaN  109.632937
         S       39.698786  83.768715  27.301780  40.782696   36.904007
         W       49.670535  66.442188  72.853962  64.791541   41.014700
    2016 E       38.388212  65.782743  50.332091  29.604978   59.610948
         N       29.523157  39.702785  46.555568        NaN   74.166048
         S       31.292163  91.905342  22.590774  48.125503   40.766833
         W       43.356486  49.935648  61.237368  61.780280   48.403081
    2017 E       29.999764  50.469091  53.820935  21.917220   63.225173
         N       23.144194  44.182024  56.224184  73.611386   47.923053
         S       39.958449  97.206148  36.318395  38.854843   48.255563
         W       39.394688  44.748035  61.690934  40.369818   52.724580
    2018 E       44.147129  60.643527  52.280244  35.161092   79.539544
         N       30.314490  30.613567  38.863245  88.982652   39.505871
         S       43.003287  78.883680  62.720196  46.120358   47.269314
         W       53.430137  53.121051  59.104072  34.959932   56.230274
    2019 E       39.953920  69.182441  30.876777  51.356302   94.883691
         N       56.479921  30.338623  49.644488  83.042179   25.614797
         S       55.892248  47.252970  65.340297  44.674311   32.825135
         W       61.341875  43.624507  50.857851  26.915145   83.036502
    

    With this output, the last 5 years average ending in 2019 is:

    new_df.loc[2019]
    

    which gives

    type            0          1          2          3          4
    region                                                       
    E       39.953920  69.182441  30.876777  51.356302  94.883691
    N       56.479921  30.338623  49.644488  83.042179  25.614797
    S       55.892248  47.252970  65.340297  44.674311  32.825135
    W       61.341875  43.624507  50.857851  26.915145  83.036502