Search code examples
c++vectorizationeigen

Vectorization of weighted outer product


I am looking to accelerate the calculation of an approximate weighted covariance.

Specifically, I have a Eigen::VectorXd(N) w and a Eigen::MatrixXd(M,N) points. I'd like to calculate the sum of w(i)*points.col(i)*(points.col(i).transpose()).

I am using a for loop but would like to see if I can go faster:

Eigen::VectorXd w = Eigen::VectorXd(N) ;
Eigen::MatrixXd points = Eigen::MatrixXd(M,N) ;
Eigen::MatrixXd tempMatrix = Eigen::MatrixXd(M,M) ;
for (int i=0; i < N ; i++){
    tempMatrix += w(i)*points.col(i)*(points.col(i).transpose());
}

Looking forward to see what can be done!


Solution

  • The following should work:

    Eigen::MatrixXd tempMatrix; // not necessary to pre-allocate
    // assigning the product allocates tempMatrix if needed
    // noalias() tells Eigen that no factor on the right aliases with tempMatrix
    tempMatrix.noalias() = points * w.asDiagonal() * points.adjoint();
    

    or directly:

    Eigen::MatrixXd tempMatrix = points * w.asDiagonal() * points.adjoint();
    

    If M is really big, it can be significantly faster to just compute one side and copy it (if needed):

    Eigen::MatrixXd tempMatrix(M,M);
    tempMatrix.triangularView<Eigen::Upper>() = points * w.asDiagonal() * points.adjoint();
    tempMatrix.triangularView<Eigen::StrictlyLower>() = tempMatrix.adjoint();
    

    Note that .adjoint() is equivalent to .transpose() for non-complex scalars, but with the former the code works as well if points and the result where MatrixXcd instead (w must still be real, if the result must be self-adjoint).

    Also, notice that the following (from your original code) does not set all entries to zero:

    Eigen::MatrixXd tempMatrix = Eigen::MatrixXd(M,M);
    

    If you want this, you need to write:

    Eigen::MatrixXd tempMatrix = Eigen::MatrixXd::Zero(M,M);