A matrix cov_mat
stores the covariances between variables:
a_plane a_boat a_train b_plane b_boat b_train c_plane c_boat c_train d_plane …
a_plane 4.419 -0.583 0.446 0.018 -1.291 3.159 -0.954 0.488 3.111 1.100
a_boat -0.583 2.636 1.813 -1.511 -0.420 -0.757 1.698 1.668 1.091 0.120
a_train 0.446 1.813 2.668 -0.365 -0.183 1.040 1.347 1.813 0.806 -0.324
b_plane 0.018 -1.511 -0.365 2.498 1.153 1.498 -0.465 -1.157 -0.775 0.133
b_boat -1.291 -0.420 -0.183 1.153 1.043 -0.194 0.243 -0.361 -0.981 -0.040
b_train 3.159 -0.757 1.040 1.498 -0.194 4.153 -0.208 0.257 1.922 1.434
c_plane -0.954 1.698 1.347 -0.465 0.243 -0.208 1.791 0.909 0.259 0.394
c_boat 0.488 1.668 1.813 -1.157 -0.361 0.257 0.909 2.290 1.572 0.269
c_train 3.111 1.091 0.806 -0.775 -0.981 1.922 0.259 1.572 4.097 2.001
d_plane 1.100 0.120 -0.324 0.133 -0.040 1.434 0.394 0.269 2.001 2.231
…
final_need
is a data frame with a row for each category of transportation (plane, boat, train) and a column for every possible covariance within a given category:
aa ab ac ad ba bb bc bd ca cb … <dd>
plane 4.419 0.018 -0.954 1.100 0.018 2.498 -0.465 0.133 -0.954 -0.465 …
boat 2.636 -0.420 1.668 0.120 -0.420 1.043 -0.361 …
train …
<…>
To get from cov_mat
to final_need
, I've converted the file to an edgelist via igraph, then eliminated rows of that edgelist that included out-of-category covariance calculations (e.g.,
a_planecovaries with
a_boat`, but I could care less). Here's the result:
> head(cov_edgelist_slim)
from to covariance
a_plane a_plane 4.419
a_plane b_plane 0.018
a_plane c_plane -0.954
a_plane d_plane 1.100
b_plane a_plane …
… … …
I then try to use dcast()
from reshape2
, but am getting stuck on how to use the function to produce the final_need
result. Any thoughts? If there's a simpler way than the one I'm heading down, I'm happy to hear it!
Here is another approach using base R:
The additional code is to get the right column names for final_need
based on pasting together the combinations of the prefixes.
## sort row + colnames in alphabetical order
cov_mat <- cov_mat[sort(rownames(cov_mat)), sort(colnames(cov_mat))]
## unique prefix and vehicle names
prefix <- unique(sub("_\\w+$", "", colnames(cov_mat)))
vehicNames <- unique(sub("^\\w+?_", "", colnames(cov_mat)))
## create final_need
final_need <- t(sapply(vehicNames, function(vehic) {
indices <- grep(vehic, colnames(cov_mat))
as.vector(cov_mat[indices, indices])
}))
## add prefix combinations as column names
colnames(final_need) <- levels(interaction(prefix, prefix, sep = ""))
final_need
#> aa ba ca ab bb cb ac bc cc
#> boat 2.636 -0.420 1.668 -0.420 1.043 -0.361 1.668 -0.361 2.290
#> plane 4.419 0.018 -0.954 0.018 2.498 -0.465 -0.954 -0.465 1.791
#> train 2.668 1.040 0.806 1.040 4.153 1.922 0.806 1.922 4.097
EDIT: the same can be done the other way around, i.e. extract the sub-matrix of covariances for each prefix combination and combine their diagonals back into a matrix (by column).
## create final_need by column
final_need <- apply(expand.grid(prefix, prefix), 1, function(i) {
row_ids <- grep(sprintf("^%s_", i[1]), rownames(cov_mat))
col_ids <- grep(sprintf("^%s_", i[2]), colnames(cov_mat))
cov_mat[cbind(row_ids, col_ids)]
})
## add row + column names
dimnames(final_need) <- list(vehicNames, levels(interaction(prefix, prefix, sep = "")))
final_need
#> aa ba ca ab bb cb ac bc cc
#> boat 2.636 -0.420 1.668 -0.420 1.043 -0.361 1.668 -0.361 2.290
#> plane 4.419 0.018 -0.954 0.018 2.498 -0.465 -0.954 -0.465 1.791
#> train 2.668 1.040 0.806 1.040 4.153 1.922 0.806 1.922 4.097