I have this dataset: https://www.kaggle.com/abcsds/pokemon/download. I loaded it and did some changes:
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
pokemons=pd.read_csv('../input/pokemon/Pokemon.csv')
del pokemons['Type 2']
pokemons.rename(columns={'Type 1':'Type'},inplace=True)
What I want is to make some swarmplots for each stat of the each pokemons type with hue=Legendary. I want to visualize how are legendary pokemons situated. I already did swarmplots without hue. Firstly, I needed to melt the dataframe:
pok_melt=pd.melt(pokemons,id_vars=['Name','Type','Legendary'],value_vars=['HP','Defense','Attack','Sp. Atk','Sp. Def','Speed'])
pok_melt.head()
Then, the code for swarmplots (At one point I needed the types names alphabetically ordered for another plot so that's why they are ordered):
list_types=pokemons['Type'].unique().tolist()
list_types.sort()
list_types
plt.figure(figsize=(17,22))
k=1
for i in list_types:
plt.subplot(6,3,k)
k=k+1
sns.swarmplot(x=pok_melt.variable,y=pok_melt[pok_melt.Type==i].value,palette='gist_stern')
plt.title(i)
plt.xlabel('')
These are some of the swarmplots:
So I tried to do this:
plt.figure(figsize=(17,22))
k=1
for i in list_types:
plt.subplot(6,3,k)
k=k+1
sns.swarmplot(x=pok_melt.variable,y=pok_melt[pok_melt.Type==i].value,palette='gist_stern',
hue=pok_melt.Legendary)
plt.title(i)
plt.xlabel('')
And i get this error: IndexError: boolean index did not match indexed array along dimension 0; dimension is 69 but corresponding boolean dimension is 800
Filter column Legendary
like y
parameter:
plt.figure(figsize=(17,22))
k=1
for i in list_types:
plt.subplot(6,3,k)
k=k+1
sns.swarmplot(x=pok_melt.variable,
y=pok_melt[pok_melt.Type==i].value,
hue=pok_melt[pok_melt.Type==i].Legendary,
palette='gist_stern')
plt.title(i)
plt.xlabel('')
Or better is filter only once fo variable df
and assign columns df['value']
to y
and df['Legendary']
to hue
:
plt.figure(figsize=(17,22))
k=1
for i in list_types:
plt.subplot(6,3,k)
k=k+1
df = pok_melt.loc[pok_melt.Type==i]
sns.swarmplot(x=pok_melt.variable,
y=df['value'],
hue=df['Legendary'],
palette='gist_stern')
plt.title(i)
plt.xlabel('')