I'm trying to convert a TFRecord dataset back to images and I'm using the following code to do so:
def get_im_and_label_helper(parsed_features, im_format, label_format):
im = tf.image.decode_png(parsed_features['image/encoded'])
label = tf.image.decode_png(parsed_features['image/segmentation/class/encoded'])
im, label = im.eval(), label.eval()
return im, label
for tfr_file_path_name in tfr_files_list:
tfr_file_path = os.path.join(sub_dataset_dir, tfr_file_path_name)
record_iterator = tf.python_io.tf_record_iterator(tfr_file_path)
for string_record in record_iterator:
parsed_features = tf.parse_single_example(string_record, READ_FEATURES)
filename = parsed_features['image/filename'].eval().decode("utf-8")
im, label = get_im_and_label_helper(parsed_features, im_format, label_format)
imageio.imwrite(os.path.join(target_dir, "images", filename + ".png"), im)
imageio.imwrite(os.path.join(target_dir, "labels", filename + ".png"), label)
It works fine and does what I expect - extracts the images and labels and saves them in the proper place. It starts fast and it gets slower and slower as it goes on. I'm inexperienced with tensorflow, so I assume I'm causing some computation graph to grow bigger and bigger, but I don't really know.
Any ideas?
Using tf.enable_eager_execution()
followed by tf.executing_eagerly()
, and replacing all .eval()
with .numpy()
solved the problem.