I am having a hard time finding resources online about how to preform backpropagation with the bias in a convolutional neural network. By bias I mean the number added to every number resulting from a convolution.
Here is a picture further explaining
I know how to calculate the gradient for the filter's weights but I am not sure what to do about the biases. Right now I am just adjusting it by the average error for that layer. Is this correct?
It is similar to the bias gradient in standard neural networks but here we sum over all the gradients w.r.t convolution output:
where L is the loss function, w and h are the width and height of the conv output, is the gradient of the conv output w.r.t the loss function.
Thus, the gradient of b is computed by summing all the convolution output gradients at each position (w, h) w.r.t the loss function L.
Hope this helps.