I have the following dataframe :
Time A
1 1
2 1
3 1
4 1
5 2
6 2
7 3
8 3
9 2
10 1
11 1
12 1
13 3
14 3
15 3
need to create a sliding window with length of 3 which slides 2 steps over time column and apply some costume function to column A ( for the sake of this examplelet's say mean and max)
the r equivalent for it would be
dat %>% dplyr::mutate(SMA_A=rollapplyr(A, 3, mean ,by = 2,align ="center", partial=TRUE, fill=NA),
Max_A =rollapplyr(A, 3, max ,by=2, align ="center", partial=TRUE,fill=NA)
)
expected output :
Time A SMA_A Max_A
1 1 1.000000 1
2 1 NA NA
3 1 1.000000 1
4 1 NA NA
5 2 1.666667 2
6 2 NA NA
7 3 2.666667 3
8 3 NA NA
9 2 2.000000 3
10 1 NA NA
11 1 1.000000 1
12 1 NA NA
13 3 2.333333 3
14 3 NA NA
15 3 3.000000 3
or without NAs
You can do the following:
DataFrame.rolling
remainder == 1
which means it's an uneven numberNaN
with .loc
df['A'] = df.rolling(3, center=True)['A'].mean().bfill().ffill()
df['Max_A'] = df.rolling(3, center=True)['A'].max().bfill().ffill()
mask_idx = df.index%2 == 1
df.loc[mask_idx, ['A', 'Max_A']] = np.NaN
output
Time A Max_A
0 1 1.000000 1.0
1 2 NaN NaN
2 3 1.000000 1.0
3 4 NaN NaN
4 5 1.666667 2.0
5 6 NaN NaN
6 7 2.666667 3.0
7 8 NaN NaN
8 9 2.000000 3.0
9 10 NaN NaN
10 11 1.000000 1.0
11 12 NaN NaN
12 13 2.333333 3.0
13 14 NaN NaN
14 15 3.000000 3.0