I am writing a parquet file from a Spark DataFrame the following way:
df.write.parquet("path/myfile.parquet", mode = "overwrite", compression="gzip")
This creates a folder with multiple files in it.
When I try to read this into pandas, I get the following errors, depending on which parser I use:
import pandas as pd
df = pd.read_parquet("path/myfile.parquet", engine="pyarrow")
PyArrow:
File "pyarrow\error.pxi", line 83, in pyarrow.lib.check_status
ArrowIOError: Invalid parquet file. Corrupt footer.
fastparquet:
File "C:\Program Files\Anaconda3\lib\site-packages\fastparquet\util.py", line 38, in default_open return open(f, mode)
PermissionError: [Errno 13] Permission denied: 'path/myfile.parquet'
I am using the following versions:
I tried gzip as well as snappy compression. Both do not work. I of course made sure that I have the file in a location where Python has permissions to read/write.
It would already help if somebody was able to reproduce this error.
Since this still seems to be an issue even with newer pandas versions, I wrote some functions to circumvent this as part of a larger pyspark helpers library:
import pandas as pd
import datetime
import os
def read_parquet_folder_as_pandas(path, verbosity=1):
files = [f for f in os.listdir(path) if f.endswith("parquet")]
if verbosity > 0:
print("{} parquet files found. Beginning reading...".format(len(files)), end="")
start = datetime.datetime.now()
df_list = [pd.read_parquet(os.path.join(path, f)) for f in files]
df = pd.concat(df_list, ignore_index=True)
if verbosity > 0:
end = datetime.datetime.now()
print(" Finished. Took {}".format(end-start))
return df
def read_parquet_as_pandas(path, verbosity=1):
"""Workaround for pandas not being able to read folder-style parquet files.
"""
if os.path.isdir(path):
if verbosity>1: print("Parquet file is actually folder.")
return read_parquet_folder_as_pandas(path, verbosity)
else:
return pd.read_parquet(path)
This assumes that the relevant files in the parquet "file", which is actually a folder, end with ".parquet". This works for parquet files exported by databricks and might work with others as well (untested, happy about feedback in the comments).
The function read_parquet_as_pandas()
can be used if it is not known beforehand whether it is a folder or not.