I am stuck and don't know exactly what to do I have a mongodb server that stores open high low close volume from a pandas dataframe I am trying to figure out how I can query every single document and get just the values without specifying the datetime stamp. I am new to mongodb and not entirely sure what to do
"_id" : ObjectId("5d7d5aa984323fa67c2e9002"),
"exchange" : "binance",
"instrument" : "XRPUSDT",
"timeframe" : "1d",
"candles" : {
"2019-09-06:0000" : {
"open" : 0.25616,
"high" : 0.25868,
"low" : 0.24692,
"close" : 0.2511,
"volume" : 63377736.0
},
"2019-09-07:0000" : {
"open" : 0.25115,
"high" : 0.26285,
"low" : 0.25009,
"close" : 0.25993,
"volume" : 53971229.0
},
"2019-09-08:0000" : {
"open" : 0.25989,
"high" : 0.26591,
"low" : 0.2555,
"close" : 0.26205,
"volume" : 65033003.0
}
"_id" : ObjectId("5d7d74925bff7734c6c348a0"),
"exchange" : "binance",
"instrument" : "XRPUSDT",
"timeframe" : "1d",
"candles" : {
"2019-09-06:0000" : {
"open" : 0.25616,
"high" : 0.25868,
"low" : 0.24692,
"close" : 0.2511,
"volume" : 63377736.0
},
"2019-09-07:0000" : {
"open" : 0.25115,
"high" : 0.26285,
"low" : 0.25009,
"close" : 0.25993,
"volume" : 53971229.0
},
"2019-09-08:0000" : {
"open" : 0.25989,
"high" : 0.26591,
"low" : 0.2555,
"close" : 0.26205,
"volume" : 65033003.0
}
for example i want the value for close in every document how can i query mongodb in python3 to just return something like ["close": 0.2511, 0.25993, 0.26205, 0.2511, 0.25993, 0.26205]
and also get all timestamps from every document like [2019-09-06:0000, 2019-09-07:0000, 2019-09-08:0000, 2019-09-06:0000,2019-09-06:0000, 2019-09-07:0000, 2019-09-08:0000]
The key (if you excuse the pun) to this is .items() which allows you to get the key, value pairs . After this, everything else is just dictionary operators which you can manipulate as needed.
import pymongo
db = pymongo.MongoClient()['mydatabase']
db.pricedata.insert_one({
"exchange": "binance",
"instrument": "XRPUSDT",
"timeframe": "1d",
"candles": {
"2019-09-06:0000": {
"open": 0.25616,
"high": 0.25868,
"low": 0.24692,
"close": 0.2511,
"volume": 63377736.0
},
"2019-09-07:0000": {
"open": 0.25115,
"high": 0.26285,
"low": 0.25009,
"close": 0.25993,
"volume": 53971229.0
},
"2019-09-08:0000": {
"open": 0.25989,
"high": 0.26591,
"low": 0.2555,
"close": 0.26205,
"volume": 65033003.0
}
}
})
db.pricedata.insert_one(
{
"exchange": "binance",
"instrument": "XRPUSDT",
"timeframe": "1d",
"candles": {
"2019-09-06:0000": {
"open": 0.25616,
"high": 0.25868,
"low": 0.24692,
"close": 0.2511,
"volume": 63377736.0
},
"2019-09-07:0000": {
"open": 0.25115,
"high": 0.26285,
"low": 0.25009,
"close": 0.25993,
"volume": 53971229.0
},
"2019-09-08:0000": {
"open": 0.25989,
"high": 0.26591,
"low": 0.2555,
"close": 0.26205,
"volume": 65033003.0
}
}
}
)
looking_for = 'close'
for record in db.pricedata.find({}, {"candles": 1, "_id": 0}):
for k, v in record['candles'].items():
print (f'{k}: {v[looking_for]}')
Result:
2019-09-06:0000: 0.2511
2019-09-07:0000: 0.25993
2019-09-08:0000: 0.26205
2019-09-06:0000: 0.2511
2019-09-07:0000: 0.25993
2019-09-08:0000: 0.26205