I have a requirement where I have to add a dictionary in the lemmatization step. While trying to use it in a pipeline and doing pipeline.fit() I get a arrayIndexOutOfBounds exception. What is the correct way to implement this? are there any examples?
I am passing token as the inputcol for lemmatization and lemma as the outputcol. Following is my code:
// DocumentAssembler annotator
val document = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
// SentenceDetector annotator
val sentenceDetector = new SentenceDetector()
.setInputCols("document")
.setOutputCol("sentence")
// tokenizer annotaor
val token = new Tokenizer()
.setInputCols("sentence")
.setOutputCol("token")
import com.johnsnowlabs.nlp.util.io.ExternalResource
// lemmatizer annotator
val lemmatizer = new Lemmatizer()
.setInputCols(Array("token"))
.setOutputCol("lemma")
.setDictionary(ExternalResource("C:/data/notebook/lemmas001.txt","LINE_BY_LINE",Map("keyDelimiter"->",","valueDelimiter"->"|")))
val pipeline = new Pipeline().setStages(Array(document,sentenceDetector,token,lemmatizer))
val result= pipeline.fit(df).transform(df)
The error message is:
Name: java.lang.ArrayIndexOutOfBoundsException
Message: 1
StackTrace: at com.johnsnowlabs.nlp.util.io.ResourceHelper$$anonfun$flattenRevertValuesAsKeys$1$$anonfun$apply$14.apply(ResourceHelper.scala:315)
at com.johnsnowlabs.nlp.util.io.ResourceHelper$$anonfun$flattenRevertValuesAsKeys$1$$anonfun$apply$14.apply(ResourceHelper.scala:312)
at scala.collection.Iterator$class.foreach(Iterator.scala:891)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1334)
at com.johnsnowlabs.nlp.util.io.ResourceHelper$$anonfun$flattenRevertValuesAsKeys$1.apply(ResourceHelper.scala:312)
at com.johnsnowlabs.nlp.util.io.ResourceHelper$$anonfun$flattenRevertValuesAsKeys$1.apply(ResourceHelper.scala:312)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at com.johnsnowlabs.nlp.util.io.ResourceHelper$.flattenRevertValuesAsKeys(ResourceHelper.scala:312)
at com.johnsnowlabs.nlp.annotators.Lemmatizer.train(Lemmatizer.scala:52)
at com.johnsnowlabs.nlp.annotators.Lemmatizer.train(Lemmatizer.scala:19)
at com.johnsnowlabs.nlp.AnnotatorApproach.fit(AnnotatorApproach.scala:45)
at org.apache.spark.ml.Pipeline$$anonfun$fit$2.apply(Pipeline.scala:153)
at org.apache.spark.ml.Pipeline$$anonfun$fit$2.apply(Pipeline.scala:149)
at scala.collection.Iterator$class.foreach(Iterator.scala:891)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1334)
at scala.collection.IterableViewLike$Transformed$class.foreach(IterableViewLike.scala:44)
at scala.collection.SeqViewLike$AbstractTransformed.foreach(SeqViewLike.scala:37)
at org.apache.spark.ml.Pipeline.fit(Pipeline.scala:149)
Your pipeline looks good to me so everything depends on what is inside lemmas001.txt
and are you being able to access it on Windows.
NOTE: I have seen users on Windows using this inside Apache Spark:
"C:\\Users\\something\\Desktop\\someDirectory\\somefile.txt"
How to train Lemmatizer
in Spark NLP is simple:
val lemmatizer = new Lemmatizer()
.setInputCols(Array("token"))
.setOutputCol("lemma")
.setDictionary("AntBNC_lemmas_ver_001.txt", "->", "\t")
The file must have the following format where the keyDelimiter
in this case is ->
and the valueDelimiter
is \t
:
abnormal -> abnormal abnormals
abode -> abode abodes
abolish -> abolishing abolished abolish abolishes
abolitionist -> abolitionist abolitionists
abominate -> abominate abominated abominates
abomination -> abomination abominations
aboriginal -> aboriginal aboriginals
aborigine -> aborigines aborigine
abort -> aborted abort aborts aborting
abortifacient -> abortifacients abortifacient
abortionist -> abortionist abortionists
abortion -> abortion abortions
abo -> abo abos
abotrite -> abotrites abotrite
abound -> abound abounds abounding abounded
Also, if you don't want to train your own Lemmatizer, you can use the pre-trained models as follow:
English
val lemmatizer = new LemmatizerModel.pretrained(name="lemma_antbnc", lang="en")
.setInputCols(Array("token"))
.setOutputCol("lemma")
French
val lemmatizer = new LemmatizerModel.pretrained(name="lemma", lang="fr")
.setInputCols(Array("token"))
.setOutputCol("lemma")
Italian
val lemmatizer = new LemmatizerModel.pretrained(name="lemma", lang="it")
.setInputCols(Array("token"))
.setOutputCol("lemma")
German
val lemmatizer = new LemmatizerModel.pretrained(name="lemma", lang="de")
.setInputCols(Array("token"))
.setOutputCol("lemma")
List of all pre-trained models is here: https://nlp.johnsnowlabs.com/docs/en/models
List of all pre-trained pipelines is here: https://nlp.johnsnowlabs.com/docs/en/pipelines
Please let me know in the comment if you have more questions.
Full disclosure: I am one of the contributors of Spark NLP library.
Update: I found this example for you in Scala on Databricks in case you are interested (This is actually how they trained Italian Lemmatizer model)