I have a data set contains lat/long for two points in four columns and trying to calculate the distance between them in the newly added column using geopy.distance
.
It is working fine if I calculate for a single value but doesn't work for the whole column.
import pandas as pd
from geopy import distance
sub_set = main[['Site_1','Site_Longitude_1','Site_Latitude_1','Site_2','Site_Longitude_2','Site_Latitude_2']]
lat1 = sub_set['Site_Latitude_1']
lat2 = sub_set['Site_Latitude_2']
long1 = sub_set['Site_Longitude_1']
long2 = sub_set['Site_Longitude_2']
The data frame sub_set
is as follows
Site_1 Site_Longitude_1 Site_Latitude_1 Site_2 Site_Longitude_2 Site_Latitude_2
0 A -118.645167 34.237917 A2 -118.6499422 34.24973484
1 A -118.645167 34.237917 A2 -118.6499422 34.24973484
2 B -118.626659 34.224762 A2 -118.6499422 34.24973484
3 B -118.626659 34.224762 A2 -118.6499422 34.24973484
4 B -118.626659 34.224762 A2 -118.6499422 34.24973484
On executing,
sub_set['Distance'] = distance.distance((lat1,long1),(lat2,long2)).miles
the following error message is thrown,
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all()
subset
stuff is not requireddf['Distance'] = df[['Site_Latitude_1', 'Site_Longitude_1', 'Site_Latitude_2', 'Site_Longitude_2']].apply(lambda x: distance.distance((x[0],x[1]), (x[2],x[3])).miles, axis=1)
x[]
is properly indexed for the correct column in df
df['Distance'] = df.apply(lambda x: distance.distance((x[2],x[1]), (x[5],x[4])).miles, axis=1)
Site_1 Site_Longitude_1 Site_Latitude_1 Site_2 Site_Longitude_2 Site_Latitude_2 Distance
0 A -118.645167 34.237917 A2 -118.6499422 34.24973484 0.859202
1 A -118.645167 34.237917 A2 -118.6499422 34.24973484 0.859202
2 B -118.626659 34.224762 A2 -118.6499422 34.24973484 2.177003
3 B -118.626659 34.224762 A2 -118.6499422 34.24973484 2.177003
4 B -118.626659 34.224762 A2 -118.6499422 34.24973484 2.177003