I want to implement SVM with Qiskit. I used this following code.
from qiskit import Aer
from qiskit.aqua.utils import split_dataset_to_data_and_labels
from qiskit.aqua.input import get_input_instance
from qiskit.aqua import run_algorithm
n = 2 # dimension of each data point
sample_Total, training_input, test_input, class_labels = Breast_cancer(training_size=40,
test_size=10, n=n, PLOT_DATA=True)
temp = [test_input[k] for k in test_input]
total_array = np.concatenate(temp)
aqua_dict = {
'problem': {'name': 'svm_classification', 'random_seed': 100},
'algorithm': {
'name': 'QSVM.Kernel'
},
'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entangler_map': {0: [1]}},
'multiclass_extension': {'name': 'AllPairs'},
'backend': {'name': 'qasm_simulator', 'shots': 256}
}
algo_input = get_input_instance('SVMInput')
algo_input.training_dataset = training_input
algo_input.test_dataset = test_input
algo_input.datapoints = total_array
result = run_algorithm(aqua_dict, algo_input)
for k,v in result.items():
print("'{}' : {}".format(k, v))
But this code shows this error
ImportError: cannot import name 'get_input_instance'
This is because this method is removed from Qiskit. I got this piece of information from this github issue. They have suggested to use EnergyInput() instead of get_input_instance() in a similar way. So I modified the previous code in the following way.
!pip install qiskit
from qiskit import Aer
from qiskit.aqua.utils import split_dataset_to_data_and_labels
from qiskit.aqua.input import EnergyInput
from qiskit.aqua import run_algorithm
algo_input = EnergyInput('SVMInput')
algo_input.training_dataset = training_input
algo_input.test_dataset = test_input
algo_input.datapoints = total_array
Now this code shows that EnergyInput cannot take anykind of String input. This generates the following error.
AttributeError: 'str' object has no attribute 'to_dict'
Have a look at this tutorial about creating QSVMs. Instead of EnergyInput()
they use a class called ClassificationInput()
to which they pass their data.
This makes the overall expression:
algo_input = ClassificationInput(training_input, test_input, datapoints[0])