Given the following data:
Class Name
====== =============
Math John Smith
-------------------------
Math Jenny Simmons
-------------------------
English Sarah Blume
-------------------------
English John Smith
-------------------------
Chemistry Roger Tisch
-------------------------
Chemistry Jenny Simmons
-------------------------
Physics Sarah Blume
-------------------------
Physics Jenny Simmons
I have a list of classes and names in each, like so:
[
{class: 'Math', student: 'John Smith'},
{class: 'Math', student: 'Jenny Simmons'},
{class: 'English', student: 'Sarah Blume'},
{class: 'English', student: 'John Smith'},
{class: 'Chemistry', student: 'John Smith'},
{class: 'Chemistry', student: 'Jenny Simmons'},
{class: 'Physics', student: 'Sarah Blume'},
{class: 'Physics', student: 'Jenny Simmons'},
]
I'd like to create an adjacency matrix, which would, as input, have the following structure, showing the number of students in common between each pair of classes:
How would I be able to do so in python/pandas in the most performant manner? I've got ~19M of these class/student pairs (~240MB) in my list.
You can prepare the data for the adjacency matrix like this:
# create the "class-tuples" by
# joining the dataframe with itself
df_cross= df.merge(df, on='student', suffixes=['_left', '_right'])
# remove the duplicate tuples
# --> this will get you a upper / or lower
# triangular matrix with diagonal = 0
# if you rather want to have a full matrix
# just change the >= to == below
del_indexer= (df_cross['class_left']>=df_cross['class_right'])
df_cross.drop(df_cross[del_indexer].index, inplace=True)
# create the counts / lists
grouby_obj= df_cross.groupby(['class_left', 'class_right'])
result= grouby_obj.count()
result.columns= ['value']
# if you want to have lists of student names
# that have the course-combination in
# common, you can do it with the following line
# otherwise just remove it (I guess with a
# dataset of the size you mentioned, it will
# consume a lot of memory)
result['students']= grouby_obj.agg(list)
The full output looks like this:
Out[133]:
value students
class_left class_right
Chemistry English 1 [John Smith]
Math 2 [John Smith, Jenny Simmons]
Physics 1 [Jenny Simmons]
English Math 1 [John Smith]
Physics 1 [Sarah Blume]
Math Physics 1 [Jenny Simmons]
You then can use @piRSquared's method to pivot it, or do it like this:
result['value'].unstack()
Out[137]:
class_right English Math Physics
class_left
Chemistry 1.0 2.0 1.0
English NaN 1.0 1.0
Math NaN NaN 1.0
Or, if you also want the names:
result.unstack()
Out[138]:
value students
class_right English Math Physics English Math Physics
class_left
Chemistry 1.0 2.0 1.0 [John Smith] [John Smith, Jenny Simmons] [Jenny Simmons]
English NaN 1.0 1.0 NaN [John Smith] [Sarah Blume]
Math NaN NaN 1.0 NaN NaN [Jenny Simmons]