I'm a Python Programmer who recently started with PyCuda because I need to write a custom filter for image processing.
I found tex2D
and it seems very elegant to me for handling padding and out of range problems.
My problem is that I am very confused about how I can pass data to the cuda kernel.
For now I got this far:
#!/usr/bin/env python3
"""minimal example: cuda kernel that returns the input using textures"""
import numpy as np
import pycuda.driver as cuda
from pycuda.compiler import SourceModule
import pycuda.autoinit
from pycuda.tools import dtype_to_ctype
# cuda kernel
mod = SourceModule("""
#include <pycuda-helpers.hpp>
texture<fp_tex_float, 2> my_tex;
__global__ void return_input(const int input_width, const int input_height, float *output)
{
int row = blockIdx.x * blockDim.x + threadIdx.x;
int col = blockIdx.y * blockDim.y + threadIdx.y;
if(row < input_height && col < input_width)
{
int index = col * input_width + row;
output[index] = tex2D(my_tex, row, col);
}
}
""")
# get from cuda kernel
return_input = mod.get_function('return_input')
my_tex = mod.get_texref('my_tex')
# setup texture
shape = (5, 5)
img_cpu = np.random.rand(*shape).astype(np.float32)
print(img_cpu)
img_gpu = cuda.matrix_to_array(img_cpu, order='C', allow_double_hack=True)
my_tex.set_array(img_gpu)
# setup output
out_cpu = np.zeros((shape), dtype=np.float32)
out_gpu = cuda.to_device(out_cpu)
# build grid
blocksize = 32
img_height, img_width = np.shape(img_cpu)
grid = (int(np.ceil(img_height / blocksize)),
int(np.ceil(img_width / blocksize)),
1)
# call cuda kernel
return_input(img_width,
img_height,
out_gpu,
block=(blocksize, blocksize, 1),
grid=grid)
# copy back to host
cuda.memcpy_dtoh(out_gpu, out_cpu)
print(out_cpu)
For everyone stumbling over the same Problem here my Solution:
Cuda file named minimal_kernel.cu
:
#include <pycuda-helpers.hpp>
texture<float, 2> my_tex;
__global__ void return_input(const int input_width, const int input_height, float *output)
{
int row = blockIdx.x * blockDim.x + threadIdx.x;
int col = blockIdx.y * blockDim.y + threadIdx.y;
if(row < input_height && col < input_width)
{
int index = col * input_width + row;
output[index] = tex2D(my_tex, row, col);
}
}
Python file:
#!/usr/bin/env python3
"""minimal example: cuda kernel that returns the input using textures"""
import numpy as np
import pycuda.driver as cuda
from pycuda.compiler import SourceModule
import pycuda.autoinit
# get from cuda kernel
with open('./minimal_kernel.cu', 'r') as f:
mod = SourceModule(f.read())
return_input = mod.get_function('return_input')
my_tex = mod.get_texref('my_tex')
# setup texture
shape = (5, 5)
img_in = np.random.rand(*shape).astype(np.float32)
print(img_in)
cuda.matrix_to_texref(img_in, my_tex, order='C')
# setup output
img_out = np.zeros(shape, dtype=np.float32)
# build grid
blocksize = 32
img_height, img_width = np.int32(np.shape(img_in))
grid = (int(np.ceil(img_height / blocksize)),
int(np.ceil(img_width / blocksize)),
1)
# call cuda kernel
return_input(img_width,
img_height,
cuda.Out(img_out),
texrefs=[my_tex],
block=(blocksize, blocksize, 1),
grid=grid)
print(img_out)