I am hoping to find a vectorized approach to get the absolute maximum value from multiple columns in a data frame.
Basically is there an equivalent to the pmax function for getting absolute maximums.
test_df <- tibble(
some_identifier = c("apple", "tunafish", "turkey_sandwich"),
val_a = c(-1, 2, 0),
val_b = c(-3, 3, NA),
val_c = c(2, 3, 1)
)
# this is what abs_max column should be
test_df$abs_max <- c(-3, 3, 1)
test_df
# A tibble: 3 x 5
some_identifier val_a val_b val_c abs_max
<chr> <dbl> <dbl> <dbl> <dbl>
1 apple -1 -3 2 -3
2 tunafish 2 3 3 3
3 turkey_sandwich 0 NA 1 1
The abs_max column is what I want to create. A less than optimal solution may be to loop through each row; but wanted to reach out to identify possible a better method.
Here is a way using max.col
- thanks to @Gregor
f <- function(data) {
tmp <- Filter(is.numeric, data)
if(inherits(data, "tbl_df")) {
tmp <- as.matrix(tmp)
}
tmp[cbind(1:nrow(tmp),
max.col(replace(x <- abs(tmp), is.na(x), -Inf)))]
}
f(test_df)
# [1] -3 3 1
step by step
What we do is filter for numeric columns in the first step
Filter(is.numeric, test_df)
# val_a val_b val_c
#1 -1 -3 2
#2 2 3 3
#3 0 NA 1
(called tmp
in the function above)
Then
replace(x <- abs(Filter(is.numeric, test_df)), is.na(x), -Inf))
returns
# val_a val_b val_c
#1 1 3 2
#2 2 3 3
#3 0 -Inf 1
that is a data.frame where NA
s were replaced with -Inf
and all negative values were replaced with their absolute value.
max.col
returns the column position of the maximum values for each row
max.col(replace(x <- abs(Filter(is.numeric, test_df)), is.na(x), -Inf))
# [1] 2 2 3
This information is finally being used to extract the desired values from Filter(is.numeric, test_df)
using a numeric matrix, i.e.
cbind(1:nrow(Filter(is.numeric, test_df)),
max.col(replace(x <- abs(Filter(is.numeric, test_df)), is.na(x), -Inf)))
# [,1] [,2]
#[1,] 1 2
#[2,] 2 2
#[3,] 3 3
data
test_df <- data.frame(
some_identifier = c("apple", "tunafish", "turkey_sandwich"),
val_a = c(-1, 2, 0),
val_b = c(-3, 3, NA),
val_c = c(2, 3, 1), stringsAsFactors = FALSE)