Building off this question, how would one write all the columns of a dataframe to a kafka topic.
Currently I have a dataframe with some columns, I am supposed to write this to kafka with a key, therefore I create a new dataframe from the old one and specify the key and value:
val endDf: DataFrame = midDf.withColumn("key",lit(keyval)).withColumn("value",lit(testVal))
Now when I write this to kafka I specify:
endDf.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.write
.format("kafka")
.option("kafka.bootstrap.servers", "test:8808")
.option("topic", "topic1")
.save()
This works if value is a single column. But the initial dataframe is made up of multiple columns and I need to write all of these in JSON format.
How would I write all the columns as the value
. I feel it revolves around amalgamation using interDf.columns
and to_json
Kafka expects a key and a value; Therefore, you have to aggregate all remaining columns (i.e. except the key column), into a single value using to_json()
:
import org.apache.spark.sql.functions._
val value_col_names = endDf.columns.filter(_ != "yourKeyColumn")
endDf.withColumnRenamed("yourKeyColumn", "key") \
.withColumn("value", to_json(struct(value_col_names.map(col(_)):_*))) \
.select("key", "value") \
.write() \
.format("kafka") \
.option("kafka.bootstrap.servers", "test:8808") \
.option("topic", "topic1") \
.save()