Search code examples
nlpword2vecglove

Can we compare word vectors from different models using transfer learning?


I want to train two word2vec/GLoVe models on different corpora and then compare the vectors of a single word. I know that it makes no sense to do so as different models start at different random states, but what if we use pre-trained word vectors as the starting point. Can we assume that the two models will continue to build upon the pre-trained vectors by incorporating the respective domain-specific knowledge, and not go into completely different states?

Tried to find some research papers which discuss this problem, but couldn't find any.


Solution

  • Simply starting your models with pre-trained bectors would eliminate some of the randomness, but with each training epoch on your new corpora:

    • there's still randomness introduced by negative-sampling (if using that default mode), by frequent-word downsampling (if using default values of the sample parameter in word2vec), and by the interplay of different threads
    • each epoch with your new corpora will be pulling the word-vectors for present words to new, better positions for that corpora, but leaving original words unmoved. The net movements over many epochs could move words arbitrarily far from where they started, in response to the whole-corpus-effects on all words.

    So, doing so wouldn't necessarily achieve your goal in a reliable (or theoretically-defensible) way, though it might kinda-work – at least better than starting from purely random initialization – especially if your corpora are small and you do few training epochs. (That's usually a bad idea – you want big varied training data and enough passes for extra passes to make little incremental difference. But doing those things "wrong" could make your results look "better" in this scenario, where you don't want your training to change the original coordinate-space "too much". I wouldn't rely on such an approach.)

    Especially if the words you need to compare are a small subset of the total vocabulary, a couple things you could consider:

    • combine the corpora into one training corpus, shuffled together, but for those words you need to compare, replace them with corpora-specific tokens. For example, replace 'sugar' with 'sugar_c1' and 'sugar_c2' – leaving the vast majority of surrounding words to be the same tokens (and thus learn a single vector across the whole corpus). Then, the two variant tokens for the "same word" will learn different vectors, based on their differing contexts that still share many of the same tokens.

    • using some "anchor set" of words that you know (or confidently conjecture) either do mean the same across both contexts, or should mean the same, train two models but learn a transformation between the two space based on those guide words. Then, when you apply that transformation to other words, that weren't used to learn the transformation, they'll land in contrasting positions in each others' spaces, maybe achieving the comparison you need. This is a technique that's been used for language-to-language translation, and there's a helper class and example notebook included with the Python gensim library.

    There may be other better approaches, these are just two quick ideas that might work without much change to existing libraries. A project like 'HistWords', which used word-vector training to try to track evolving changes in word-meaning over time, might also have ideas for usable techniques.