I have a dataframe with values and their timestamps. The data looks like this:
library(lubridate)
df <- data.frame(date1= dmy_hms(c("01.08.2019 12:11:32", "01.05.2019 10:01:17")),
value1= c(60, 70),
date2= dmy_hms(c("01.08.2019 12:41:38", "01.05.2019 11:51:17")),
value2= c(80, 60),
date3= dmy_hms(c("02.08.2019 12:01:09", "02.05.2019 10:11:34")),
value3= c(10, 40),
date4= dmy_hms(c("02.08.2019 12:41:38", "02.05.2019 11:51:17")),
value4= c(30, 80))
df
date1 value1 date2 value2 date3 value3 date4 value4
1 2019-08-01 12:11:32 60 2019-08-01 12:41:38 80 2019-08-02 12:01:09 10 2019-08-02 12:41:38 30
2 2019-05-01 10:01:17 70 2019-05-01 11:51:17 60 2019-05-02 10:11:34 40 2019-05-02 11:51:17 80
I need to find out how the values changed after one day, caring only about the hour.
First row from data above: value1
(60
) and value2
(80
) are both recorded at 12:XX:XX
o'clock at the same day, so the mean of 12:XX:XX
o'clock for this day is 70
. The mean of 12:XX:XX
o'clock of the next day is 20
. This means a change of -50
for the first row.
Second row: Here value1
is 70
at 10:XX:XX
o'clock and one day later at 10:XX:XX
o'clock the value is 40
, so the change is -30
. The change for 11:XX:XX
o'clock from one day to the next is +20
. So the mean change is (-30 + 20)/2 = -5
.
Thus, my expected output is
mean_change <- matrix(c(-50, -5), ncol= 1)
mean_change
[,1]
[1,] -50
[2,] -5
I would change the data structure into long. At least for me, this makes the task more intuitive. Is this what you are looking for?
library(lubridate)
library(dplyr)
df <- data.frame(date1= dmy_hms(c("01.08.2019 12:11:32", "01.05.2019 10:01:17")),
value1= c(60, 70),
date2= dmy_hms(c("01.08.2019 12:41:38", "01.05.2019 11:51:17")),
value2= c(80, 60),
date3= dmy_hms(c("02.08.2019 12:01:09", "02.05.2019 10:11:34")),
value3= c(10, 40),
date4= dmy_hms(c("02.08.2019 12:41:38", "02.05.2019 11:51:17")),
value4= c(30, 80))
df
df.long <- as.data.frame(matrix(t(df), ncol=2, byrow=T))
df.long$Date <- as.Date(df.long$V1)
df.long$Time <- format(as.POSIXct(df.long$V1) ,format = "%H")
df.long <- df.long[c(2:4)]
df.long$V2 <- as.numeric(as.character(df.long$V2))
daychange <- df.long %>% group_by(Date, Time) %>% summarise(d.h.mean = mean(V2))
daychange$Date <- strftime(daychange$Date,format = "%Y-%m")
daychange %>% group_by(Date, Time) %>% mutate(change = d.h.mean-lag(d.h.mean))
# A tibble: 6 x 4
# Groups: Date, Time [3]
Date Time d.h.mean change
<chr> <chr> <dbl> <dbl>
1 2019-05 10 70 NA
2 2019-05 11 60 NA
3 2019-05 10 40 -30
4 2019-05 11 80 20
5 2019-08 12 70 NA
6 2019-08 12 20 -50