I am dealing with a regressor problem. I am at the step to tune the parameters of XGBRegressor model so I use the library GPyOpt to get the optimized parameters. The functions returns an array of 5 elements and the minimized MSE which is 1813. Then I try to input the optimized parameters in the model then the MSE for the model returns 2810. I wonder why that happened?
I am really familiar with the library GPyOpt. There isnt a lot of information about this problem I am facing so I wonder it is because of my careless mistake or there is something that I dont understand?
import GPyOpt
from GPyOpt.methods import BayesianOptimization
def cv_score(parameters):
parameters = parameters[0]
score = cross_val_score(
XGBRegressor(learning_rate=parameters[0],
gamma=int(parameters[1]),
max_depth=int(parameters[2]),
n_estimators=int(parameters[3]),
min_child_weight = parameters[4]),
x_train, y_train, scoring='neg_mean_squared_error').mean()
score = np.array(score)
return score
bds = [{'name': 'learning_rate', 'type': 'continuous', 'domain': (0, 1)},
{'name': 'gamma', 'type': 'continuous', 'domain': (0, 5)},
{'name': 'max_depth', 'type': 'discrete', 'domain': (1, 50)},
{'name': 'n_estimators', 'type': 'discrete', 'domain': (1, 300)},
{'name': 'min_child_weight', 'type': 'discrete', 'domain': (1, 10)}]
optimizer = BayesianOptimization(f=cv_score, domain=bds,
model_type='GP',
acquisition_type ='EI',
acquisition_jitter = 0.05,
exact_feval=True,
maximize=True)
optimizer.run_optimization(max_iter=20)
optimizer.x_opt
array([ 0.56133897, 2.697656 , 50. , 300. , 10. ])
xgb_final_param = {'learning_rate': 0.56133897, 'gamma': 2.697656, 'max_depth': 50, 'n_estimators': 300, 'min_child_weight': 10}
xgb_final = SklearnExtra(clf = XGBRegressor(), seed = Seed, params = xgb_final_param)
xgb_final.fit(x_train, y_train)
evaluate(xgb_final, x_test, y_test) #evaluate returns MSE
I expect the MSE to be roughly around 1813 but I got 2810. So I wonder why
Discrete variables in gpyopt aren't specified by their min/max, but by their whole value list instead. Why? Because you may have discontinuity, that is your variable might be only taking values (1, 3, 8)
. See an example of it here.
So in your example the way to properly specify the the domain for these is to generate a list of all possible values:
{'name': 'max_depth', 'type': 'discrete', 'domain': list(range(1, 51))}
Likewise for other discrete variables. Note that for continuous your code is fine - they are specified by their range.