I want a dataframe that looks like this.
a b
cars New
bikes nan
trains nan
Assume the following...
list(oldDF["Transportation"].unique())=["cars", "bikes", "trains"]
list(oldDF["Condition"].unique())=["New"]
My Code Looks like this Currently:
newList=["Transportation", "Condition"]
newDF=pf.DataFrame(columns=newList)
for i in newList:
newDF[i]= list(oldDF[i].unique())
I want to be able to print the dataframe above and fill missing values with nan rather than getting a value error.
from_dict
and orient='index'
pd.DataFrame.from_dict({n: c.unique() for n, c in oldDF.iteritems()}, orient='index').T
Transportation Condition
0 cars New
1 bikes None
2 trains None
zip_longest
from itertools import zip_longest
pd.DataFrame([*zip_longest(*map(pd.unique, map(oldDF.get, oldDF)))], columns=[*oldDF])
Transportation Condition
0 cars New
1 bikes None
2 trains None