Search code examples
c++optimizationfloating-pointfixed-point

How to convert floating point algorithm to fixed point?


After reading quite a bit about fixed-point arithmetic I think I can say I've understood the basics, unfortunately I don't know yet how to convert routines that use sin/cos/sqrt or any other fp function.

Consider this simple mcve:

#include <math.h>
#include <stdio.h>
#include <ctime>
#include <fstream>
#include <iostream>

typedef char S8;
typedef short S16;
typedef int S32;
typedef unsigned char U8;
typedef unsigned short U16;
typedef unsigned int U32;
typedef float F32;
typedef double F64;

// -------- Fixed point helpers QM.N(32bits) --------
typedef S32 FP32;

#define LUT_SIZE_BITS 9  // 0xffffffff>>(32-9)=511; 32-23=9; 2^9=512
#define LUT_SIZE 512

#define FRACT_BITS 28        // Number fractional bits
#define M (1 << FRACT_BITS)  // Scaling factor

inline F32 Q2F(FP32 X) { return ((F32)X / (F32)(M)); }
inline FP32 F2Q(F32 X) { return (FP32)(X * (M)); }

const F32 PI = 3.141592653589793f;
const F32 pi = 3.141592653589793f;
const U32 WIDTH = 256;
const U32 HEIGHT = 256;

FP32 cos_table[LUT_SIZE];
FP32 sin_table[LUT_SIZE];

void init_luts() {
    const F32 deg_to_rad = PI / 180.f;
    const F32 sample_to_deg = 1 / LUT_SIZE * 360.f;
    for (S32 i = 0; i < LUT_SIZE; i++) {
        F32 rad = ((F32)i * sample_to_deg) * deg_to_rad;
        F32 c = cos(rad);
        F32 s = sin(rad);
        cos_table[i] = F2Q(c);
        sin_table[i] = F2Q(s);
    }
}

// -------- Image processing --------
U8 clamp(F32 valor) { return valor > 255 ? 255 : (valor < 0 ? 0 : (U8)valor); }

struct Pbits {
    U32 width;
    U32 height;
    U8 *data;

    Pbits(U32 width, U32 height, U8 *data) {
        this->width = width;
        this->height = height;
        this->data = data;
    }

    Pbits(Pbits *src) {
        this->width = src->width;
        this->height = src->height;
        this->data = new U8[src->width * src->height * 3];
        memcpy(this->data, src->data, width * height * 3);
    }

    ~Pbits() { delete this->data; }

    void to_bgr() {
        U8 r, g, b;
        for (S32 y = 0; y < height; y++) {
            for (S32 x = 0; x < width; x++) {
                get_pixel(y, x, r, g, b);
                set_pixel(y, x, b, g, r);
            }
        }
    }

    void get_pixel(U32 y, U32 x, U8 &r, U8 &g, U8 &b) {
        U32 offset = (y * height * 3) + (x * 3);
        r = this->data[offset + 0];
        g = this->data[offset + 1];
        b = this->data[offset + 2];
    }

    void set_pixel(U32 y, U32 x, U8 c1, U8 c2, U8 c3) {
        U32 offset = (y * height * 3) + (x * 3);

        data[offset] = c1;
        data[offset + 1] = c2;
        data[offset + 2] = c3;
    }
};

void fx1_plasma(Pbits *dst, F32 t, F32 k1, F32 k2, F32 k3, F32 k4, F32 k5, F32 k6) {
    U32 height = dst->height;
    U32 width = dst->width;

    for (U32 y = 0; y < height; y++) {
        F32 uv_y = (F32)y / height;
        for (U32 x = 0; x < width; x++) {
            F32 uv_x = (F32)x / width;

            F32 v1 = sin(uv_x * k1 + t);
            F32 v2 = sin(k1 * (uv_x * sin(t) + uv_y * cos(t / k2)) + t);
            F32 cx = uv_x + sin(t / k1) * k1;
            F32 cy = uv_y + sin(t / k2) * k1;
            F32 v3 = sin(sqrt(k3 * (cx * cx + cy * cy)) + t);
            F32 vf = v1 + v2 + v3;

            U8 r = (U8)clamp(255 * cos(vf * pi));
            U8 g = (U8)clamp(255 * sin(vf * pi + k4 * pi / k2));
            U8 b = (U8)clamp(255 * cos(vf * pi + k5 * pi / k2));

            dst->set_pixel(y, x, r, g, b);
        }
    }
}

// -------- Image helpers --------
inline void _write_s32(U8 *dst, S32 offset, S32 v) {
    dst[offset] = (U8)(v);
    dst[offset + 1] = (U8)(v >> 8);
    dst[offset + 2] = (U8)(v >> 16);
    dst[offset + 3] = (U8)(v >> 24);
}

void write_bmp(Pbits *src, S8 *filename) {
    Pbits *dst = new Pbits(src);
    dst->to_bgr();

    S32 w = dst->width;
    S32 h = dst->height;
    U8 *img = dst->data;

    S32 filesize = 54 + 3 * w * h;

    U8 bmpfileheader[14] = {'B', 'M', 0, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0};
    U8 bmpinfoheader[40] = {40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 24, 0};
    U8 bmppad[3] = {0, 0, 0};

    _write_s32(bmpfileheader, 2, filesize);
    _write_s32(bmpinfoheader, 4, w);
    _write_s32(bmpinfoheader, 8, h);

    FILE *f = fopen(filename, "wb");
    fwrite(bmpfileheader, 1, 14, f);
    fwrite(bmpinfoheader, 1, 40, f);
    for (S32 i = 0; i < h; i++) {
        fwrite(img + (w * (h - i - 1) * 3), 3, w, f);
        fwrite(bmppad, 1, (4 - (w * 3) % 4) % 4, f);
    }

    delete dst;
}

void write_ppm(Pbits *dst, S8 *filename) {
    std::ofstream file(filename, std::ofstream::trunc);
    if (!file.is_open()) {
        std::cout << "yep! file is not open" << std::endl;
    }
    file << "P3\n" << dst->width << " " << dst->height << "\n255\n";

    U8 r, g, b, a;
    for (U32 y = 0; y < dst->height; y++) {
        for (U32 x = 0; x < dst->width; x++) {
            dst->get_pixel(y, x, r, g, b);
            file << (S32)r << " " << (S32)g << " " << (S32)b << "\n";
        }
    }
}

S32 main() {
    Pbits *dst = new Pbits(WIDTH, HEIGHT, new U8[WIDTH * HEIGHT * 3]);

    init_luts();

    clock_t begin = clock();
    fx1_plasma(dst, 0, 8, 36, 54, 51, 48, 4);
    clock_t end = clock();
    double elapsed_secs = double(end - begin) / CLOCKS_PER_SEC;

    std::cout << "Generated plasma in " << elapsed_secs << "s" << std::endl;

    write_ppm(dst, "plasma.ppm");
    write_bmp(dst, "plasma.bmp");

    delete dst;
}

This code will generate this image:

enter image description here

QUESTION: How would you convert this floating point algorithm into a fast fixed-point one? Right now the basics of the floating point arithmetic is +/- clear to me, as in:

fa,fb=floating point values; a,b=fixed_point ones; M=scaling factor

fa = a*M
fb = b*M
fa+fb = (a+b)*M
fa-fb = (a-b)*M
fa*fb = (a*b)*M^2
fa/fb = (a/b)

but how to use sin/cos/sqrt et al in fixed-point is still eluding me. I've found this related thread but I still don't understand how to use the trigonometric luts with random fp values.


Solution

  • #ifdef _MSC_VER
    #pragma comment(lib,"opengl32.lib")
    #pragma comment(lib,"glu32.lib")
    #pragma warning(disable : 4996)
    #pragma warning(disable : 26495)  //varsayılan değer atamıyorum
    #pragma warning(disable :6031)//dönüş değeri yok sayıldı
    #endif
    
    #include <Windows.h>
    #include <gl/gl.h>      //-lopengl32 
    //#include <gl/glu.h>   //-lglu32
    
    #include <math.h>
    #include <stdio.h>
    #include <stdlib.h>
    #include <time.h>
    #include <string.h>
    
    typedef unsigned char   U8;
    typedef unsigned int    U32;
    
    #define LUT_SIZE 1024           //1Kb  10 bit sin cos
    #define LUT_SIZE2 0x000fffff    //1Mb  20 bit sqrt
    
    float cos_tab[LUT_SIZE];
    float sin_tab[LUT_SIZE];
    U8    clamp_cos_tab[LUT_SIZE];
    U8    clamp_sin_tab[LUT_SIZE];
    float sqrt_tab[LUT_SIZE2];
    
    
    const float pi = 3.141592;
    const float pi_k = LUT_SIZE / (2 * pi);
    
    const U32 WIDTH = 640;  //256
    const U32 HEIGHT = 480; //256
    
    
    
    struct Pbits;
    Pbits* pdst;
    
    
    U8 clamp(float f) { return f > 255 ? 255 : (f < 0 ? 0 : (U8)f); }
    
    #define sin2(f)      sin_tab        [ (int)(pi_k * (f)) & 0x000003ff]//LUT_SIZE-1
    #define cos2(f)      cos_tab        [ (int)(pi_k * (f)) & 0x000003ff]
    #define clamp_sin(f) clamp_sin_tab  [ (int)(pi_k * (f)) & 0x000003ff]
    #define clamp_cos(f) clamp_cos_tab  [ (int)(pi_k * (f)) & 0x000003ff]
    #define sqrt2(f)     sqrt_tab       [*(int*)&(f)>>12]   //32-20 bit
    
    void init_luts()
    {
        for (int i = 0; i < LUT_SIZE; i++)
        {
            cos_tab[i] = cos(i / pi_k);
            sin_tab[i] = sin(i / pi_k);
    
            clamp_cos_tab[i] = clamp(255 * cos(i / pi_k));
            clamp_sin_tab[i] = clamp(255 * sin(i / pi_k));
        }
    
        for (int i = 0; i < LUT_SIZE2; i++)//init_luts
        {
            int ii=i<<12;       //32-20 bit
            float f = *(float *)&ii;    //i to float
            sqrt_tab[i] = sqrt(f);
        }
    
    }
    
    
    
    float sqrt3(float x)
    {
        //https ://www.codeproject.com/Articles/69941/Best-Square-Root-Method-Algorithm-Function-Precisi
        unsigned int i = *(unsigned int*)& x;
    
        i += (127 << 23);
        i >>= 1;
        return *(float*)&i;
    }
    float sqrt4(float x)
    {
        //https: //stackoverflow.com/questions/1349542/john-carmacks-unusual-fast-inverse-square-root-quake-iii
        float xhalf = 0.5f * x;
        int i = *(int*)&x;              // get bits for floating value
        i = 0x5f375a86 - (i >> 1);      // gives initial guess y0
        x = *(float*)&i;                // convert bits back to float
        x = x * (1.5f - xhalf * x * x); // Newton step, repeating increases accuracy
        return x;
    }
    
    
    
    struct Pbits
    {
        int width;
        int height;
        U8* data;
    
        Pbits(int _width, int _height, U8* _data = 0)
        {
            width = _width;
            height = _height;
            if (!_data)
                _data = (U8*)calloc(width * height * 3, 1);
            data = _data;
        }
    
        ~Pbits() { free(data); }
        void set_pixel(int y, int x, U8 c1, U8 c2, U8 c3)
        {
            int offset = (y * width * 3) + (x * 3);
    
            data[offset] = c1;
            data[offset + 1] = c2;
            data[offset + 2] = c3;
        }
        void save(const char* filename)
        {
    
            U8 pp[54] = { 'B', 'M', 0, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0 ,
                             40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 24, 0 };
            *(int*)(pp + 2) = 54 + 3 * width * height;
            *(int*)(pp + 18) = width;
            *(int*)(pp + 22) = height;
    
            int size = height * width * 3;
            U8* p = data;
            for (int i = 0; i < size; i += 3)//to_bgr()
            {
                U8 tmp = p[i];
                p[i] = p[i + 2];
                p[i + 2] = tmp;
            }
    
            FILE* f = fopen(filename, "wb");
            fwrite(pp, 1, 54, f);
            fwrite(data, size, 1, f);
            fclose(f);
    
            for (int i = 0; i < size; i += 3)//to_rgb()
            {
                U8 tmp = p[i];
                p[i] = p[i + 2];
                p[i + 2] = tmp;
            }
    
        }
    
    };
    
    void fn_plasma_slow(Pbits& dst, float t,
        float k1, float k2, float k3, float k4, float k5, float k6)
    {
        int height = dst.height;
        int width = dst.width;
    
        for (int y = 0; y < height; y++)
        {
            float uv_y = (float)y / height;
            for (int x = 0; x < width; x++)
            {
                float uv_x = (float)x / width;
    
                float v1 = sin(uv_x * k1 + t);
                float v2 = sin(k1 * (uv_x * sin(t) + uv_y * cos(t / k2)) + t);
                float cx = uv_x + sin(t / k1) * k1;
                float cy = uv_y + sin(t / k2) * k1;
                float v3 = sin(sqrt(k3 * (cx * cx + cy * cy)) + t);
                float vf = v1 + v2 + v3;
    
                U8 r = (U8)clamp(255 * cos(vf * pi));
                U8 g = (U8)clamp(255 * sin(vf * pi + k4 * pi / k2));
                U8 b = (U8)clamp(255 * cos(vf * pi + k5 * pi / k2));
    
                dst.set_pixel(y, x, r, g, b);
            }
        }
    }
    
    
    void fn_plasma_fast(Pbits& dst, float t,
        float k1, float k2, float k3,
        float k4, float k5, float k6)
    {
    
        U8* p = dst.data;
    
        float
            height = dst.height,
            width = dst.width,
    
            _k42 = pi * k4 / k2,
            _k52 = pi * k5 / k2,
            _cx = sin2(t / k1) * k1,
            _cy = sin2(t / k2) * k1,
            _x = sin2(t),
            _y = cos2(t / k2);
    
        for (float j = 0; j < height; j++)
            for (float i = 0; i < width; i++)
            {
                float
                    x = i / width,
                    y = j / height,
    
                    v1 = sin2(k1 * x + t),
                    v2 = sin2(k1 * (x * _x + y * _y) + t),
    
                    cx = x + _cx,
                    cy = y + _cy,
                    aa1 = k3 * (cx * cx + cy * cy),
    
                    v3 = sin2(sqrt2(aa1) + t),
                    vf = pi * (v1 + v2 + v3);
    
                *p++ = clamp_cos(vf);           //red
                *p++ = clamp_sin(vf + _k42);    //green
                *p++ = clamp_cos(vf + _k52);    //blue
    
            }
    }
    
    
    
    void fn_plasma_fast2(Pbits& dst, float t,
        float k1, float k2, float k3,
        float k4, float k5, float k6)
    {
    
        U8* p = dst.data;
    
        static float data_v1[1024];
        static float data_cx[1024];
        static float data_cy[1024];
        static float data_xx3[1024];
        static float data_yy3[1024];
    
        float
            height = dst.height,
            width = dst.width,
    
            _k42 = pi * k4 / k2,
            _k52 = pi * k5 / k2,
            _cx = sin2(t / k1) * k1,
            _cy = sin2(t / k2) * k1,
            _x = sin2(t)/width*k1 ,
            _y = cos2(t/k2)/height*k1;
    
    
        for (int x = 0; x < width; x++)
        {
            data_v1[x] = sin2(k1 * x /width+ t);
    
            float f = x / width + _cx;
            data_cx[x] =k3* f*f;
            data_xx3[x] = x * _x;
        }
        for (int y = 0; y < height; y++)
        {
            float f = y / height + _cy;
            data_cy[y] = k3*f * f;
            data_yy3[y] = y*_y ;
        };
    
    
        for (int y = 0; y < height; y++)
        for (int x = 0; x < width; x++)
        {
    
            //float v1 = data_v1[x];
            //float v2 = sin2(data_xx3[x] + data_yy3[y]);
    
            float aa1 = data_cx[x] + data_cy[y];
    
            //float     v3 = sin2(sqrt2(aa1) + t);
            //float     vf = pi * (v1 + v2 + v3);
            float vf = pi * (data_v1[x]+ sin2(data_xx3[x] + data_yy3[y])+ sin2(sqrt2(aa1) + t));
    
            *p++ = clamp_cos(vf);           //red
            *p++ = clamp_sin(vf + _k42);    //green
            *p++ = clamp_cos(vf + _k52);    //blue
    
        }
    }
    
    
    
    
    struct window
    {
        int  x, y, width, height;       //iç x y +en boy
    
        HINSTANCE   hist;       //  program kaydı
        HWND        hwnd;       //  window
        HDC         hdc;        //  device context 
        HGLRC       hrc;        //  opengl context 
        //WNDPROC       fn_pencere; //  pencere fonksiyonu
        WNDCLASS    wc;         //  pencere sınıfı
        PIXELFORMATDESCRIPTOR pfd;
    
        window(int _width = 256, int _height = 256)
        {
            memset(this, 0, sizeof(*this));
            x = 100;
            y = 100;
            width = _width;
            height = _height;
    
            //HINSTANCE
            hist = GetModuleHandle(NULL);
    
            //WNDCLASS
            wc.lpfnWndProc = (WNDPROC)fn_window;
            wc.hInstance = hist;
            wc.hIcon = LoadIcon(0, IDI_WINLOGO);
            wc.hCursor = LoadCursor(0, IDC_ARROW);
            wc.lpszClassName = "opengl";
            RegisterClass(&wc);
    
            //HWND
            hwnd = CreateWindow("opengl", "test",
                WS_OVERLAPPEDWINDOW,
                x, y, width + 16, height + 39,
                NULL, NULL, hist, NULL);
            //HDC
            hdc = GetDC(hwnd);
    
    
            //PFD
            pfd.nSize = sizeof(pfd);
            pfd.nVersion = 1;
            pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL | PFD_DOUBLEBUFFER;
            pfd.iPixelType = PFD_TYPE_RGBA;
            pfd.cColorBits = 32;
    
            int  pf = ChoosePixelFormat(hdc, &pfd);
            SetPixelFormat(hdc, pf, &pfd);
            DescribePixelFormat(hdc, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd);
    
            //HRC
            hrc = wglCreateContext(hdc);
            wglMakeCurrent(hdc, hrc);
    
            ShowWindow(hwnd, SW_SHOW);
            SetFocus(hwnd);
    
    
        }
        ~window()
        {
            if (hrc)
                wglMakeCurrent(NULL, NULL),
                wglDeleteContext(hrc);
            if (hdc)    ReleaseDC(hwnd, hdc);
            if (hwnd)   DestroyWindow(hwnd);
            if (hist)   UnregisterClass("opengl", hist);
        }
    
        void run()
        {
            MSG         msg;
            BOOL dongu = true;
    
            while (dongu)
            {
                if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
                {
                    if (msg.message == WM_QUIT) dongu = 0;
                    else
                    {
                        TranslateMessage(&msg);
                        DispatchMessage(&msg);
                    }
                }
                else
                {
                    render();
                    SwapBuffers(hdc);
                }
            }
        }
    
        static int __stdcall fn_window(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
        {
            switch (msg)
            {
                //case WM_CREATE:   {}  break;
                //case WM_COMMAND:  {}  break;
                //case WM_PAINT:    {}  break;
            case WM_CLOSE: {    DestroyWindow(hwnd); }break;
            case WM_DESTROY: {PostQuitMessage(0); }break;
            }
            return DefWindowProc(hwnd, msg, wParam, lParam);
        }
        static void render()
        {
            //OPENGL 1.0
            //glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);   
            //glMatrixMode(GL_PROJECTION);  glLoadIdentity();
            //glMatrixMode(GL_MODELVIEW);   glLoadIdentity();
    
            static float t; t += 0.02;
            fn_plasma_fast2(*pdst, t, 8, 36, 54, 51, 48, 4);//FAST
    
            glRasterPos3f(-1, -1, 0);
            glDrawPixels(WIDTH, HEIGHT, GL_RGB, GL_UNSIGNED_BYTE, pdst->data);
    
        }
    };
    
    
    
    int main()
    {
    
    
        Pbits dst(WIDTH, HEIGHT);
        pdst = &dst;
        init_luts();
    
    
        int begin;
    
        begin = clock();
        fn_plasma_slow(dst, 0, 8, 36, 54, 51, 48, 4);
        printf("fn_plasma_slow:  %4d\n", clock() - begin );
        dst.save("plasma_slow.bmp");
    
        begin = clock();
        fn_plasma_fast(dst, 0, 8, 36, 54, 51, 48, 4);
        printf("fn_plasma_fast: %4d\n", clock() - begin);
        dst.save("plasma_fast.bmp");
    
    
        begin = clock();
        fn_plasma_fast2(dst, 0, 8, 36, 54, 51, 48, 4);
        printf("fn_plasma_fast2: %4d\n", clock() - begin );
        dst.save("plasma_fast2.bmp");
    
    
    
        window win(WIDTH, HEIGHT);
        win.run();
    
    
        return 0;
    }