I'm using the tf.data.Dataset.from_generator() function to create a datset for ASR with audio wav_file, length of audio wav_file, transcript and transcript_len. For the ML model I need audio wav_file and length to be zero padded and therefore I used .padded_batch() already. Now I need something else than .batch() as this needs the tensors to be in the same shape but without zero padding to batch my dataset.
I want to use the CTC Loss function tf.nn.ctc_loss_v2 which needs transcript and transcript_len tensors not be padded with zeros but batched. Is there a possibility to batch a dataset with tensors included in different shapes?
def generate_values():
for _, row in df.iterrows():
yield row.wav_filename, row.transcript, len(row.transcript)
def entry_to_features(wav_filename, transcript, transcript_len):
features, features_len = audiofile_to_features(wav_filename)
return features, features_len, transcript, transcript_len
def batch_fn(features, features_len, transcripts, transcript_len):
features = tf.data.Dataset.zip((features, features_len))
features = features.padded_batch(batch_size,
padded_shapes=([None, Config.n_input], []))
trans=tf.data.Dataset.zip((transcripts,
transcript_len)).batch(batch_size) ###PROBLEM:
#### ONLY WORKING WITH BATCH_SIZE=1
return tf.data.Dataset.zip((features, trans))
dataset = tf.data.Dataset.from_generator(generate_values,
output_types=(tf.string,tf.int64, tf.int64))
dataset= dataset.map(entry_to_features)
dataset= dataset.window(batch_size, drop_remainder=True)
dataset= dataset.flat_map(batch_fn)
InvalidArgumentError (see above for traceback): Cannot batch tensors with different shapes in component 0. First element had shape [36] and element 2 had shape [34]
If you want to train a seq2seq model and use features, transcript
as training examples dataset.window
is not what you gonna use.
dataset = tf.data.Dataset.from_generator(generate_values,
output_types=(tf.string, tf.int64, tf.int64))
dataset = dataset.map(entry_to_features)
dataset = dataset.padded_batch(batch_size, padded_shapes=([None, Config.n_input], [], [None], []))
later you can use the dataset as follows:
for features, feature_length, labels, label_length in dataset.take(30):
logits, logit_length = model(features, feature_length)
loss = tf.nn.ctc_loss_v2(labels, tf.cast(logits, tf.float32),
label_length, logit_length, logits_time_major=False)