I have following problem that I try to solve with LPSolve IDE:
min: x1;
r_1: 1.08 - k <= x1;
r_2: -1.08 + k <= x1;
c_1: y1 + y2 + y3 = k;
c_2: 2.29 a1 y1 + 2.28 a2 y1 + 2.27 a3 y1 = 1;
c_3: 1.88 b1 y2 + 1.89 b2 y2 + 1.9 b3 y2 = 1;
c_4: 8.98 c1 y3 + 8.99 c2 y3 + 9.0 c3 y3 = 1;
c_14: a1+a2+a3=1;
c_15: b1+b2+b3=1;
c_16: c1+c2+c3=1;
bin a1,a2,a3,b1,b2,b3,c1,c2,c3;
Not sure why I get output from LPSolve as INFEASIBLE
when I can use following param values to solve this:
a1=0, a2=1, a3=0
b1=0, b2=1, b3=0
c1=0, c2=1, c3=0
0 + 2.28 0.438596491 + 0 = 1
0 + 1.89 0.529100529 + 0 = 1
0 + 8.99 0.111234705 + 0 = 1
0.438596491 + 0.529100529 + 0.111234705 = 1.0789 (this is k)
1.08 - 1.0789 == 0.0011 <= x1
-1.08 + 1.0789 == -0.0011 <= x1
x1 = 0.0011
Am I formulating the problem in a wrong way, or doing something else wrong? If I relax that =1 constraint to >=1 there are some results, but I need it to be 1 (as it is in my solution).
Lpsolve is for linear models only. You have products of variables in the model such as 2.29 a1 y1
. Lpsolve can not solve such quadratic models.
Too bad you don't get a good error message. I guess they never expected this input.
It is noted that products of binary and continuous variables can be linearized resulting in so-called big-M constraints (see link).
This is really a duplicate of lpsolve - unfeasible solution, but I have example of 1. Embarrassingly, this was an earlier question from the same poster!