I have 2 columns of postal codes. One represents my orders, and the other represents reported issues with these orders, both are in separate data sets.
I have a Postal Code column in my orders dataset:
B0E1H0
B3M0G4
B3K6R6
B3L1J7
B0E1H0
B3K3M2
B3K2Z8
B0E1H0
B3K6R6
B0E1H0
I have a postal code column in my reported issues dataset:
B3K6R6
B3K6R6
B0E1H0
B0E1H0
B3L1J7
I would like to end up with a data frame that gives me a list of unique postal codes, the count of volume, the count of issue, and the proportion of issues for each postal code, so something like this:
Postal code, Volume, Issues, Issue %
BOE1H0, 4, 2, 50%
B3K2Z8, 1, 0, 0%
B3K3M2, 1, 0, 0%
B3K6R6, 2, 2, 100%
B3L1J7, 1, 1, 100%
B3M0G4, 1, 0, 0%
I was able to get the 1st 2 rows by doing something like this:
orders <- read.csv("G:\\My Drive\\R\\R Data\\Stuff\\Text File\\Orders.csv", header = TRUE)
pcvec <- as.vector(orders["Postal.Code"])
unipc <- unique(pcvec,incomparables = F)
unipcvec <- as.vector(unipc)
pccount <- count(orders, "Postal.Code")
nrow(unipc)
x <- data.frame(pccount)
x <- rename(x, c("freq" = "Volume"))
x
Postal.Code Volume
1 B0C1H0 1
2 B0E1B0 3
3 B0E1H0 7
4 B0E1L0 1
5 B0E1N0 1
6 B0E1P0 1
7 B0E1V0 1
8 B0E1W0 1
9 B0E2K0 1
I have about 5000 rows in my volume dataset about 300 in my issues dataset, is possible to do this easily?
Apologies if I don’t have the proper terminology, please let me know if I can clarify this.
Here is one option with data.table
. Convert the 'data.frame' to 'data.table' (setDT(df1)
, setDT(df2)
), get the number of rows (.N
) by 'V1', do a join on
the 'V1', then get the percentage by dividing the non-common columns, while assigning the NA
to 0
library(data.table)
setnames(setDT(df1)[, .N, V1][setDT(df2)[, .N, V1],
Issues := i.N, on = .(V1)][, Issue_perc:= Issues/N * 100][is.na(Issues),
c('Issues', 'Issue_perc') := 0], 'N', 'Volume')[]
# V1 Volume Issues Issue_perc
#1: B0E1H0 4 2 50
#2: B3M0G4 1 0 0
#3: B3K6R6 2 2 100
#4: B3L1J7 1 1 100
#5: B3K3M2 1 0 0
#6: B3K2Z8 1 0 0
Or another option with dcast
dcast(rbindlist(list(df1, df2), idcol = 'grp')[, .N, .(grp, V1)],
V1 ~ c("Volume", "Issues")[grp], value.var = "N", fill = 0)[,
Issue_perc := Issues/Volume * 100][]
# V1 Issues Volume Issue_perc
#1: B0E1H0 2 4 50
#2: B3K2Z8 0 1 0
#3: B3K3M2 0 1 0
#4: B3K6R6 2 2 100
#5: B3L1J7 1 1 100
#6: B3M0G4 0 1 0
Or using base R
, we create a union
of elements in the 'V1' column from both datasets, then convert to factor
with levels
specified as the 'lvls', get the table
, do a merge
and transform
to create the 'Issue_perc' column
lvls <- union(df1$V1, df2$V1)
transform(merge(as.data.frame(table(factor(df1$V1, levels = lvls))),
as.data.frame(table(factor(df2$V1, levels = lvls))), by = 'Var1'),
Issue_perc = Freq.y/Freq.x * 100)
# Var1 Freq.x Freq.y Issue_perc
#1 B0E1H0 4 2 50
#2 B3K2Z8 1 0 0
#3 B3K3M2 1 0 0
#4 B3K6R6 2 2 100
#5 B3L1J7 1 1 100
#6 B3M0G4 1 0 0
or an option with tidyverse
, we get the datasets into a list
, map
through the list
, convert the 'V1' to factor
with levels
specified as earlier, reduce
the list
to a single data.frame by doing an inner_join
, then create the percentage column with mutate
library(tidyverse)
list(df1, df2) %>%
map(~ .x %>%
mutate(V1 = factor(V1, levels = lvls)) %>%
count(V1, .drop = FALSE)) %>%
reduce(inner_join, by = 'V1') %>%
mutate(Issue_perc = n.y/n.x * 100) %>%
rename_at(vars(matches('n\\.')), ~ c("Volume", "Issues"))
# A tibble: 6 x 4
# V1 Volume Issues Issue_perc
# <fct> <int> <int> <dbl>
#1 B0E1H0 4 2 50
#2 B3M0G4 1 0 0
#3 B3K6R6 2 2 100
#4 B3L1J7 1 1 100
#5 B3K3M2 1 0 0
#6 B3K2Z8 1 0 0
Or a slightly different option is to place the datasets in a list
, then bind them with a grouping column, count
to get the frequency, spread
to 'wide' format and then create the new 'perc' column
list(df1, df2) %>%
bind_rows(.id = 'grp') %>%
count(grp, V1) %>%
mutate(grp = c("Volume", "Issues")[as.integer(grp)]) %>%
spread(grp, n, fill = 0) %>%
mutate(Issue_perc = Issues/Volume * 100)
# A tibble: 6 x 4
# V1 Issues Volume Issue_perc
# <chr> <dbl> <dbl> <dbl>
#1 B0E1H0 2 4 50
#2 B3K2Z8 0 1 0
#3 B3K3M2 0 1 0
#4 B3K6R6 2 2 100
#5 B3L1J7 1 1 100
#6 B3M0G4 0 1 0
df1 <- structure(list(V1 = c("B0E1H0", "B3M0G4", "B3K6R6", "B3L1J7",
"B0E1H0", "B3K3M2", "B3K2Z8", "B0E1H0", "B3K6R6", "B0E1H0")), row.names
= c(NA, -10L), class = "data.frame")
df2 <- structure(list(V1 = c("B3K6R6", "B3K6R6", "B0E1H0", "B0E1H0",
"B3L1J7")), row.names = c(NA, -5L), class = "data.frame")