I am trying to interpret two graphs from my regression model.
Training error and Validation error from my machine learning model
my case is similar to this: Very large loss values when training multiple regression model in Keras but my MSE and RMSE are very high.
Is my modeling underfitting? if yes what can I do to solve this problem?
Here is my neural network I used for solving a regression problem
def build_model():
model = keras.Sequential([
layers.Dense(128, activation=tf.nn.relu, input_shape=[len(train_dataset.keys())]),
layers.Dense(64, activation=tf.nn.relu),
layers.Dense(1)
])
optimizer = tf.keras.optimizers.RMSprop(0.001)
model.compile(loss='mean_squared_error',
optimizer=optimizer,
metrics=['mean_absolute_error', 'mean_squared_error'])
return model
and my data set I have 500 samples, 10 features and 1 target
Quite the opposite: it looks like your model is over-fitting. When you have low error rates for your training set, it means that your model has learned from the data well and can infer the results accurately. If your validation data is high afterwards however, that means that the information learned from your training data is not successfully being applied to new data. This is because your model has 'fit' onto your training data too much, and only learned how to predict well when its based off of that data.
To solve this, we can introduce common solutions to reduce over-fitting. A very common technique is to use Dropout layers. This will randomly remove some of the nodes so that the model cannot correlate with them too heavily - therefor reducing dependency on those nodes and 'learning' more using the other nodes too. I've included an example that you can test below; try playing with the value and other techniques to see what works best. And as a side note: are you sure that you need that many nodes within your dense layer? Seems like quite a bit for your data set, and that may be contributing to the over-fitting as a result too.
def build_model():
model = keras.Sequential([
layers.Dense(128, activation=tf.nn.relu, input_shape=[len(train_dataset.keys())]),
Dropout(0.2),
layers.Dense(64, activation=tf.nn.relu),
layers.Dense(1)
])
optimizer = tf.keras.optimizers.RMSprop(0.001)
model.compile(loss='mean_squared_error',
optimizer=optimizer,
metrics=['mean_absolute_error', 'mean_squared_error'])
return model