I am trying to analysis the reliability of my data from 2 separate sources (A and B). Since the range of fields is rather unequal I am focusing on common fields and run a comparison.
Here I selected the price and quantity and want to ensure the tuple [priceA, quantityA] is contained in my list of tuples [[price1B, quantity1B], [price2B, quantity2B], .. ] from source B.
I tried to create a udf to do so looking at other references, but I have just started with Pyspark and I don't really undertsand how to define my udf and the appropriate DataType to specify in the given case.
I have 2 dataframe for my 2 separate sources
I appended for each df a new column "combined" : StructField(combined_a,ArrayType(IntegerType,true),false)))
df_a = df_a.withColumn("combined_a", array("Quantity", "PRICE"))
and created a list of unique tuples :
list_a = list(df_a.select("combined_a").distinct().toPandas()["combined_a"])
output list_a
list_a = [ [81.0, 100.0], [56.0, 6.0], [10000.0, 45.32], [42.0, 6.0] ...]
I couldn't find any built-in functions that could satisfy my request : I want to append a new column "combinaison_in_b" of Boolean type. tried:
df_a = df_a.withColumn('combinaison_in_b_found' , col('combined_a').isin(list_b))
Returns following error
An error occurred while calling z:org.apache.spark.sql.functions.lit.
: java.lang.RuntimeException: Unsupported literal type class java.util.ArrayList [50, 51]
went on with a udf. tried:
def IsInDataframe(combined_a , list_b):
found = TRUE
for c in combined_a
if c not in list_b:
found = False
if found:
return True
else:
return False
def udf_append(list_b):
return udf(lambda combined_a : IsInDataframe(combined_a , list_b))
df_a.withColumn("combinaison_in_b_found", udf_append(list_b)(col("combined_a"))).cast('boolean')
(udf syntax taken from pyspark how do we check if a column value is contained in a list
I would really appreciate, if someone could explain the part where it says return udf)
I would like as output my df with additional column "combinaison_in_b_found" True/False.
_______________________________________________
id | combined_a | combinaison_in_b_found
1 | [81.0, 100.0] | false
2 | [56.0, 6.0] | true
...
Try this:
df_a = spark.createDataFrame([(1,[81.0, 100.0]), (1, [56.0, 6.0]),(3,[77.0, 88.0]), (4,[42., 8.])], ('id', 'combined_a') )
df_a.show()
list_b = [ [81.0, 100.0], [56.0, 6.0], [10000.0, 45.32], [42.0, 6.0]]
print('list_b: {}'.format(list_b))
my_udf = udf(lambda pair: 'true' if pair in list_b else 'false', StringType())
df_a = df_a.withColumn('combinaison_in_b_found', my_udf(df_a['combined_a']))
df_a.show()
Here's the output:
+---+-------------+
| id| combined_a|
+---+-------------+
| 1|[81.0, 100.0]|
| 1| [56.0, 6.0]|
| 3| [77.0, 88.0]|
| 4| [42.0, 8.0]|
+---+-------------+
list_b: [[81.0, 100.0], [56.0, 6.0], [10000.0, 45.32], [42.0, 6.0]]
+---+-------------+----------------------+
| id| combined_a|combinaison_in_b_found|
+---+-------------+----------------------+
| 1|[81.0, 100.0]| true|
| 1| [56.0, 6.0]| true|
| 3| [77.0, 88.0]| false|
| 4| [42.0, 8.0]| false|
+---+-------------+----------------------+