I am currently designing a user space scheduler in C11 for a custom co-processor under Linux (user space, because the co-processor does not run its own OS, but is controlled by software running on the host CPU). It keeps track of all the tasks' states with an array. Task states are regular integers in this case. The array is dynamically allocated and each time a new task is submitted whose state does not fit into the array anymore, the array is reallocated to twice its current size. The scheduler uses multiple threads and thus needs to synchronize its data structures.
Now, the problem is that I very often need to read entries in that array, since I need to know the states of tasks for scheduling decisions and resource management. If the base address was guaranteed to always be the same after each reallocation, I would simply use C11 atomics for accessing it. Unfortunately, realloc obviously cannot give such a guarantee. So my current approach is wrapping each access (reads AND writes) with one big lock in the form of a pthread mutex. Obviously, this is really slow, since there is locking overhead for each read, and the read is really small, since it only consists of a single integer.
To clarify the problem, I give some code here showing the relevant passages:
Writing:
// pthread_mutex_t mut;
// size_t len_arr;
// int *array, idx, x;
pthread_mutex_lock(&mut);
if (idx >= len_arr) {
len_arr *= 2;
array = realloc(array, len_arr*sizeof(int));
if (array == NULL)
abort();
}
array[idx] = x;
pthread_mutex_unlock(&mut);
Reading:
// pthread_mutex_t mut;
// int *array, idx;
pthread_mutex_lock(&mut);
int x = array[idx];
pthread_mutex_unlock(&mut);
I have already used C11 atomics for efficient synchronization elsewhere in the implementation and would love to use them to solve this problem as well, but I could not find an efficient way to do so. In a perfect world, there would be an atomic accessor for arrays which performs address calculation and memory read/write in a single atomic operation. Unfortunately, I could not find such an operation. But maybe there is a similarly fast or even faster way of achieving synchronization in this situation?
EDIT: I forgot to specify that I cannot reuse slots in the array when tasks terminate. Since I guarantee access to the state of every task ever submitted since the scheduler was started, I need to store the final state of each task until the application terminates. Thus, static allocation is not really an option.
Do you need to be so economical with virtual address space? Can't you just set a very big upper limit and allocate enough address space for it (maybe even a static array, or dynamic if you want the upper limit to be set at startup from command-line options).
Linux does lazy memory allocation so virtual pages that you never touch aren't actually using any physical memory. See Why is iterating though `std::vector` faster than iterating though `std::array`? that show by example that reading or writing an anonymous page for the first time causes a page fault. If it was a read access, it gets the kernel to CoW (copy-on-write) map it to a shared physical zero page. Only an initial write, or a write to a CoW page, triggers actual allocation of a physical page.
Leaving virtual pages completely untouched avoids even the overhead of wiring them into the hardware page tables.
If you're targeting a 64-bit ISA like x86-64, you have boatloads of virtual address space. Using up more virtual address space (as long as you aren't wasting physical pages) is basically fine.
If you allocate more memory than you could ever practically use (touching it all would definitely segfault or invoke the kernel's OOM killer), that will be as large or larger than you could ever grow via realloc
.
To allocate this much, you may need to globally set /proc/sys/vm/overcommit_memory
to 1 (no checking) instead of the default 0
(heuristic which makes extremely large allocations fail). Or use mmap(MAP_NORESERVE)
to allocate it, making that one mapping just best-effort growth on page-faults.
The documentation says you might get a SIGSEGV
on touching memory allocated with MAP_NORESERVE
, which is different than invoking the OOM killer. But I think once you've already successfully touched memory, it is yours and won't get discarded. I think it's also not going to spuriously fail unless you're actually running out of RAM + swap space. IDK how you plan to detect that in your current design (which sounds pretty sketchy if you have no way to ever deallocate).
Test program:
#include <stdlib.h>
#include <stdio.h>
#include <sys/mman.h>
int main(void) {
size_t sz = 1ULL << 46; // 2**46 = 64 TiB = max power of 2 for x86-64 with 48-bit virtual addresses
// in practice 1ULL << 40 (1TiB) should be more than enough.
// the smaller you pick, the less impact if multiple things use this trick in the same program
//int *p = aligned_alloc(64, sz); // doesn't use NORESERVE so it will be limited by overcommit settings
int *p = mmap(NULL, sz, PROT_WRITE|PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE, -1, 0);
madvise(p, sz, MADV_HUGEPAGE); // for good measure to reduce page-faults and TLB misses, since you're using large contiguous chunks of this array
p[1000000000] = 1234; // or sz/sizeof(int) - 1 will also work; this is only touching 1 page somewhere in the array.
printf("%p\n", p);
}
$ gcc -Og -g -Wall alloc.c
$ strace ./a.out
... process startup
mmap(NULL, 70368744177664, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE, -1, 0) = 0x15c71ef7c000
madvise(0x15c71ef7c000, 70368744177664, MADV_HUGEPAGE) = 0
... stdio stuff
write(1, "0x15c71ef7c000\n", 15) = 15
0x15c71ef7c000
exit_group(0) = ?
+++ exited with 0 +++
My desktop has 16GiB of RAM (a lot of it in use by Chromium and some big files in /tmp) + 2GiB of swap. Yet this program allocated 64 TiB of virtual address space and touched 1 int
of it nearly instantly. Not measurably slower than if it had only allocated 1MiB. (And future performance from actually using that memory should also be unaffected.)
The largest power-of-2 you can expect to work on current x86-64 hardware is 1ULL << 46
. The total lower canonical range of the 48-bit virtual address space is 47 bits (user-space virtual address space on Linux), and some of that is already allocated for stack/code/data. Allocating a contiguous 64 TiB chunk of that still leaves plenty for other allocations.
(If you do actually have that much RAM + swap, you're probably waiting for a new CPU with 5-level page tables so you can use even more virtual address space.)
Speaking of page tables, the larger the array the more chance of putting some other future allocations very very far from existing blocks. This can have a minor cost in TLB-miss (page walk) time, if your actual in-use pages end up more scattered around your address space in more different sub-trees of the multi-level page tables. That's more page-table memory to keep in cache (including cached within the page-walk hardware).
The allocation size doesn't have to be a power of 2 but it might as well be. There's also no reason to make it that big. 1ULL << 40
(1TiB) should be fine on most systems. IDK if having more than half the available address space for a process allocated could slow future allocations; bookkeeping is I think based on extents (ptr + length) not bitmaps.
Keep in mind that if everyone starts doing this for random arrays in libraries, that could use up a lot of address space. This is great for the main array in a program that spends a lot of time using it. Keep it as small as you can while still being big enough to always be more than you need. (Optionally make it a config parameter if you want to avoid a "640kiB is enough for everyone" situation). Using up virtual address space is very low-cost, but it's probably better to use less.
Think of this as reserving space for future growth but not actually using it until you touch it. Even though by some ways of looking at it, the memory already is "allocated". But in Linux it really isn't. Linux defaults to allowing "overcommit": processes can have more total anonymous memory mapped than the system has physical RAM + swap. If too many processes try to use too much by actually touching all that allocated memory, the OOM killer has to kill something (because the "allocate" system calls like mmap
have already returned success). See https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
(With MAP_NORESERVE
, it's only reserving address space which is shared between threads, but not reserving any physical pages until you touch them.)
You probably want your array to be page-aligned: #include <stdalign.h>
so you can use something like
alignas(4096) struct entry process_array[MAX_LEN];
Or for non-static, allocate it with C11 aligned_alloc()
.
Page alignment makes it easy do the calculations to "give back" a memory page (4kiB on x86) if your array's logical size shrinks enough. madvise(addr, 4096*n, MADV_FREE);
(Linux 4.5 and later). This is kind of like mmap(MAP_FIXED)
to replace some pages with new untouched anonymous pages (that will read as zeroes), except it doesn't split up the logical mapping extents and create more bookkeeping for the kernel.
Don't bother with this unless you're returning multiple pages, and leave at least one page unfreed above the current top to avoid page faults if you grow again soon. Like maybe maintain a high-water mark that you've ever touched (without giving back) and a current logical size. If high_water - logical_size > 16 pages
give back all page from 4 past the logical size up to the high water mark.
If you will typically be actually using/touching at least 2MiB of your array, use madvise(MADV_HUGEPAGE)
when you allocate it to get the kernel to prefer using transparent hugepages. This will reduce TLB misses.
(Use strace
to see return values from your madvise
system calls, and look at /proc/PID/smaps
, to see if your calls are having the desired effect.)
If up-front allocation is unacceptable, RCU (read-copy-update) might be viable if it's read-mostly. https://en.wikipedia.org/wiki/Read-copy-update. But copying a gigantic array every time an element changes isn't going to work.
You'd want a different data-structure entirely where only small parts need to be copied. Or something other than RCU; like your answer, you might not need the read side being always wait-free. The choice will depend on acceptable worst-case latency and/or average throughput, and also how much contention there is for any kind of ref counter that has to bounce around between all threads.
Too bad there isn't a realloc
variant that attempts to grow without copying so you could attempt that before bothering other threads. (e.g. have threads with idx>len
spin-wait on len
in case it increases without the array
address changing.)