This might be a bit foolish but I'm trying to use ctypes to call a function that receives a complex vector as a paramter. But in ctypes there isn't a class c_complex. Does anybody know how to solve this?
edit: I'm refering to python's ctypes, in case there are others....
As noted by the OP in their comment on @Armin Rigo's answer, the correct way to do this is with wrapper functions. Also, as noted in the comments (by me) on the original question, this is also possible for C++ and Fortran. However, the method for getting this to work in all three languages is not necessarily obvious. Therefore, this answer presents a working example for each language.
Let's say you have a C/C++/Fortran procedure that takes a scalar complex argument. Then you would need to write a wrapper procedure that takes two floats / doubles (the real and imaginary parts), combines them into a complex number and then calls the original procedure. Obviously, this can be extended to arrays of complex numbers but let's keep it simple with a single complex number for now.
For example, let's say you have a C function to print a formatted complex number. So we have my_complex.c
:
#include <stdio.h>
#include <complex.h>
void print_complex(double complex z)
{
printf("%.1f + %.1fi\n", creal(z), cimag(z));
}
Then we would have to add a wrapper function (at the end of the same file) like this:
void print_complex_wrapper(double z_real, double z_imag)
{
double complex z = z_real + z_imag * I;
print_complex(z);
}
Compile that into a library in the usual way:
gcc -shared -fPIC -o my_complex_c.so my_complex.c
Then call the wrapper function from Python:
from ctypes import CDLL, c_double
c = CDLL('./my_complex_c.so')
c.print_complex_wrapper.argtypes = [c_double, c_double]
z = complex(1.0 + 1j * 2.0)
c.print_complex_wrapper(c_double(z.real), c_double(z.imag))
The same thing in C++ is a bit more fiddly because an extern "C"
interface needs to be defined to avoid name-mangling and we need to deal with the class in Python (both as per this SO Q&A).
So, now we have my_complex.cpp
(to which I have already added the wrapper function):
#include <stdio.h>
#include <complex>
class ComplexPrinter
{
public:
void printComplex(std::complex<double> z)
{
printf("%.1f + %.1fi\n", real(z), imag(z));
}
void printComplexWrapper(double z_real, double z_imag)
{
std::complex<double> z(z_real, z_imag);
printComplex(z);
}
};
We also need to add an extern "C"
interface (at the end of the same file) like this:
extern "C"
{
ComplexPrinter* ComplexPrinter_new()
{
return new ComplexPrinter();
}
void ComplexPrinter_printComplexWrapper(ComplexPrinter* printer, double z_real, double z_imag)
{
printer->printComplexWrapper(z_real, z_imag);
}
}
Compile into a library in the usual way:
g++ -shared -fPIC -o my_complex_cpp.so my_complex.cpp
And call the wrapper from Python:
from ctypes import CDLL, c_double
cpp = CDLL('./my_complex_cpp.so')
cpp.ComplexPrinter_printComplexWrapper.argtypes = [c_double, c_double]
class ComplexPrinter:
def __init__(self):
self.obj = cpp.ComplexPrinter_new()
def printComplex(self, z):
cpp.ComplexPrinter_printComplexWrapper(c_double(z.real), c_double(z.imag))
printer = ComplexPrinter()
z = complex(1.0 + 1j * 2.0)
printer.printComplex(z)
And finally in Fortran we have the original subroutine in my_complex.f90
:
subroutine print_complex(z)
use iso_c_binding, only: c_double_complex
implicit none
complex(c_double_complex), intent(in) :: z
character(len=16) :: my_format = "(f4.1,a3,f4.1,a)"
print my_format, real(z), " + ", aimag(z), "i"
end subroutine print_complex
To which we add the wrapper function (at the end of the same file):
subroutine print_complex_wrapper(z_real, z_imag) bind(c, name="print_complex_wrapper")
use iso_c_binding, only: c_double, c_double_complex
implicit none
real(c_double), intent(in) :: z_real, z_imag
complex(c_double_complex) :: z
z = cmplx(z_real, z_imag)
call print_complex(z)
end subroutine print_complex_wrapper
Then compile into a library in the usual way:
gfortran -shared -fPIC -o my_complex_f90.so my_complex.f90
And call from Python (note the use of POINTER):
from ctypes import CDLL, c_double, POINTER
f90 = CDLL('./my_complex_f90.so')
f90.print_complex_wrapper.argtypes = [POINTER(c_double), POINTER(c_double)]
z = complex(1.0 + 1j * 2.0)
f90.print_complex_wrapper(c_double(z.real), c_double(z.imag))